期刊文献+

基于梯度图及Hausdorff距离的人脸识别算法 被引量:1

Face Recognition Using Gradient Map and Hausdorff Distance Measure
下载PDF
导出
摘要 本文提出一种基于梯度图及PHD(Partial Hausdorff Distance)距离的人脸识别算法。首先,为了使识别独立于光照变化,所有图像均转换为梯度图,其次,采用Hausdorff距离进行图像的匹配,实验结果显示该方法适用于人脸识别,且距离计算对于光照,及较小的姿态、表情变化具有一定的鲁棒性。最后,实验采用AR及FERET人脸数据库,并与EM(Edge Map)与LEM(Line segment Edge Map)算法进行比较。 A gradient- based face recognition method using Partial Hausdorff Distance (PHD) measure is proposed in this paper. First, in order to achieve a performance independent of lighting conditions, the image is transformed into a Gradient Map (GM). And then, Hausdorff distance measure is introduced to calculate the dissimilarity between two Gradient Maps. The experimental data show that the measure is suitable for face recognition. As we can see later, this distance measure is robust to lighting variations, slight pose differences and expression changes in face images. At last, recognition accuracy is given tested on AR and FERET databases, and comparisons with Edge Map (EM) and Line segment Edge Map (LEM) approaches are also presented.
作者 李小丽
出处 《安徽科技学院学报》 2016年第5期55-61,共7页 Journal of Anhui Science and Technology University
基金 福建省教育厅科技项目(JA15840)
关键词 人脸识别 HAUSDORFF距离 梯度图 Face recognition Hausdorff distance Gradient Map
  • 相关文献

参考文献2

二级参考文献30

  • 1李刚,王蒙军,林凌.视觉驱动的语音合成系统中唇形轮廓的傅里叶描述[J].仪器仪表学报,2007,28(8):1464-1468. 被引量:1
  • 2WEI Di, CRAWFORD M M. Aclive learning via multi-view and local proximity co-regularization lbr hyperspectral image classification [J]. IEEE Journal of Selected Topics in Signal Processing, 2011,5(3): 618 628.
  • 3MELGANI F, BRUZZONE L. Classification ofhyperspectral remote sensing images with support vector machines [J]. IEEE Transactions oll Geoscience and Remote Sensing, 2004, 42(8): 1778 1790.
  • 4CAMPS-VALLS G, BRUZZONE L. Kernel-based methods for hyperspectral image classification [J]. 1EEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1351-1362.
  • 5CAMPS-VALLS G, GOMEZ~CHOVA L, CALPE-MARAVILLA J, MARTiN-GUERRERO J D, SORIA-OLIVAS E, ALONSO- C[IORD,~ L, MORENO J. Robust support vector method forhyperspectral data classification and knowledge discovery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1530-1542.
  • 6LI Shi-jin, WU Hao, WAN Ding-sheng, ZHU Jia-li. An effective feature selection method for hyperspectral image classification based genetic algorithm and support vector machine [J]. Knowledge-Based Systems, 2011, 24(1): 40 48.
  • 7ZHANG Ye, DESAI M D, ZHANG Jun-ping, JIN Ming. Adaptive subspace decomposition for hyperspectral data dimensionality reduction [C]//IEEE International Conference on Image Processing. globe, Japan: IEEE Press, 1999: 326-329.
  • 8HUANG Yi-heng, ZHANG Wen-sheng, WANG Jue. Multiple instance learning with correlated features [J]. International Journal of Fuzzy Systems, 2012, 14(2): 305-313.
  • 9WANG Shi-jun, MCKENNA M T, NGUYEN T B, BURNS J E, PETRICK N, SAHINER B, SUMMERS R M. Seeing is believing: Video classification for computed tomographic colonography using multiple-instance learning [J]. IEEE Transactions on Medical Imaging, 2012, 31(5): 1141-1153.
  • 10RAYKAR V C, KRISHNAPURAM B, BI J B, DUNDAR M, RAO R B. Bayesian multiple instance learning: Automatic feature selection and inductive transfer [C]// Proceedings of the 25th International Conference on Machine Learning. New York, USA: Association for Computing Machinery, 2008:808-815.

共引文献3

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部