摘要
基于流形正则化思想,提出了半监督凸非负矩阵分解算法.该算法通过类间图和类内图刻画数据的内在几何结构,使得所提算法不但具有数据矩阵凸分解特性,而且保持它的几何结构和判别信息.最后,人脸数据集上的实验研究表明所提算法能够获得良好的识别性能.
Based on manifold regularization,we develop a novel algorithm called Semi-supervised Convex Nonnegative Matrix Factorization(SCNMF).SCNMF can capture the data intrinsic geometric structure with within-class graph and between-class graph.Not only does the proposed algorithm holds data matrix convex factorization,but also preserves geometric structure and discriminant analysis.Finally,experimental results demonstrate that it achieves encouraging results on face data sets.
出处
《辽宁师范大学学报(自然科学版)》
CAS
2016年第4期451-457,共7页
Journal of Liaoning Normal University:Natural Science Edition
基金
辽宁省自然科学基金资助项目(60875029)
辽宁省大学生实践基地建设项目(辽教[2015]399号)
关键词
非负矩阵分解
判别信息
几何结构
nonnegative matrix factorization
discriminative information
geometric
structure