摘要
讨论了Banach空间中二阶发展方程适度解的存在性.利用Laplace变换及余弦函数族的性质,首先给出了适度解的定义.利用Schauder不动点定理进一步的给出了方程适度解的存在性.改进和推广了已有的一些结果.
The paper is concerned with the existence of mild solutions of second-order evo- lution equations in Banach spaces. We first obtain the definition of mild solutions by using Laplace transformation and the properties of cosine families. We then give the existence of mild solutions of the equations by the Schauder's fixed point theorem. It improves and generalizes some previous results.
出处
《数学的实践与认识》
北大核心
2016年第23期247-250,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11271316
11526178)