期刊文献+

有限域上一类方程组的解数公式 被引量:1

The number of solutions to a class of equation systems over finite fields
原文传递
导出
摘要 设F_q为一个q元有限域,其中q=p^s(s≥1),p是一个奇素数.本文给出下列方程组在F_q上的解数公式:a_(k1)x_1^(d_(11)^((k)))...x_(n_1)^(d_(1n_1)^((k)))+...+a_(k,s_1)x_1^(d_(s_1,1)^((k)))...x_(n_1)^(d_(s_1,n_1)^((k)))+a_(k,s_1)+1x_1^(d_(s_1+1,1)^((k)))...x_(n_2)^(d_(s_1+1,n_2)^((k)))+...a_(k,s_2)x_1^(d_(s_2,1)^((k)))...x_(n_2)^(d_(s_2,1)^((k)))...x_(n_2)^(d_(s_2,n_2)^((k)))=b_k,k=1,...,m,其中0<s_1<s_2,0<n_1<n_2,a_(ki)∈F_q~*,b_k∈F_q,d_(ij)^(k)>0(k=l,...,m,i=1,...,s_2,j=1,...,n_2).特别当ms_1≤n_1,ms_2≤n_2,d_(ij)^(k)满足一定条件时,得到了明确的解数公式. Let Fq be a finite field with q = ps (s ≥ 1) elements, where p is an odd prime number. In this paper, we present a formula for the number of solutions to the following equation system defined over Fq: where 0 〈 sx 〈 s2, 0 〈 n1 〈 n2, aki∈ Fq, bk ∈ Fq, dij(k) 〉 0 (k = 1,...,m, i = 1,...,s2, j = 1,...,n2). Especially when ms1 ≤ nx, ms2 ≤ n2, dij(k) satisfying certain conditions, an explicit formula is obtained for the number of solutions to the equation system.
作者 宋佳 陈玉福 SONG Jia CHENYuFu
出处 《中国科学:数学》 CSCD 北大核心 2016年第12期1815-1828,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271363)资助项目
关键词 有限域 方程组 矩阵 finite field, equation system, matrix
  • 相关文献

参考文献7

二级参考文献47

  • 1杨继明.关于R─模上的方程组[J].南都学坛(南阳师专学报),1994,14(6):18-25. 被引量:12
  • 2赵敦华.“进化”的科学意义[J].求是学刊,2006,33(2):26-31. 被引量:8
  • 3CARLITZ L. Certain special equations in a finite field [J]. Monatsh. Math., 1954, 58: 5-12.
  • 4BAOULINA I. On the Problem of Explicit EvRluation of the Number of Solutions of Equation a1x1^2+ … + anxn^2 = bx1 …xn in a Finite Field [M]. Hindustan Book Agency, New Delhi, 2002.
  • 5BAOULINA I. On some equations over finite fields [J]. J. Theor. Nombres Bordeaux, 2005, 17(1): 45-50.
  • 6SUN Qi, WAN Daqing. On the solvability of the equation Σi=1^n xi/di≡0(mod 1) and its application [J]. Proc. Amer. Math. Sot., 1987, 100(2): 220-224.
  • 7SUN Qi, YUAN Pingzhi. On the number of solutions of diagonaJ equations over a finite field [J]. Finite Fields Appl., 1996, 2(1): 35-41.
  • 8BAOULINA I. On the number of solutions of the equation a1x1^m1 +… + anxn^mn = bx1… xm in a finire field [J]. Acta Appl. Math., 2005, 85(1-3): 35-39.
  • 9BERNDT B C, EVANS R J, WILLIAMS K S. Gauss and Jacobi Sums [M]. John Wiley & Sons, Inc., New York, 1998.
  • 10LIDL R, NIEDERREITER H. Finite Fields [M]. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.

共引文献24

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部