期刊文献+

群作用下子流形的微分不变量和Monge-Taylor形式

Differential invariants and the Monge-Taylor forms for submanifolds under group actions
原文传递
导出
摘要 通过对等价活动标架方法及群作用下无穷小生成子的高阶延拓和微分不变量全局递推公式的研究,本文给出可自动获取无穷小生成子高阶延拓的定理,并基于符号计算及确定的规范化微分不变量基本集,给出可自动构造无穷多高阶规范化微分不变量的精确递推公式及描述高阶微分不变量之间关系的无穷多syzygies的系统化方法.最后,基于所获高阶微分不变量,构造了群作用下一般子流形的显式Monge-Taylor形式. Motivated by the equivariant moving frame method and starting from the study about the prolonga- tion of the infinitesimal generators of transformation groups and the universal recurrence formulae for differential invariants, we present some theories which make it possible for the systematic determination of the higher order prolongation of the infinitesimal generators. Farthermore, based on the symbolic computation and the fundamen- tal sets of the determined normalized differential invariants, we give the exact recurrence formulae to construct the infinitely many higher order normalized differential invariants and syzygies which show the relationships be- tween them. In addition, by the obtained normalized differential invariants, the explicit Monge-Taylor forms are obtained extensively for submanifolds under group actions.
作者 姚若侠 王伟 杨晓博 YAO RuoXia WANG Wei YANG XiaoBo
出处 《中国科学:数学》 CSCD 北大核心 2016年第12期1829-1844,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(基金号:11471004和11071278)资助项目
关键词 等价活动标架 微分不变量 SYZYGY Monge—Taylor形式 Euclid群 等仿射群 equivariant moving frame, differential invariant, syzygy, Monge-Taylor form, Euclidean group,equi-affine group
  • 相关文献

参考文献3

二级参考文献23

  • 1丁青,朱佐农.A geometric characterization of the nonlinear Schrodinger equation and its applications[J].Science China Mathematics,2002,45(10):1225-1237. 被引量:2
  • 2Bonnafé C. On a Theorem of Shintani. J Algebra, 1999, 218: 229-245.
  • 3Borel A, Tist J. Homomorphismes “abstraits” de groupes algebriques simples. Ann Math, 1973, 97: 499-571.
  • 4Carter R W. Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. New York: John Wiley and Sons, 1985.
  • 5Curtis C W, Reiner I. Methods of Representation Theory: With Applications to Finite Groups and Order, Vols. I and II. Pure and Applied Mathematics. New York: John Wiley and Sons, 1981 and 1987.
  • 6Deligne P, Lusztig G. Representations of Reductive Groups Over Finite Fields. Ann Math, 1976, 103: 103-161.
  • 7Kazhdan D, Lusztig G. Representations of Coxeter groups and Hecke algebras. Invent Math, 1979, 53: 165-184.
  • 8Lusztig G. Left cells in Weyl groups. In: Lie Groups Representations. Lecture Notes in Math, vol. 1024. Berlin: Springer-Verlag 1983, 99-111.
  • 9Lusztig G. Characters of Reductive Groups Over A Finite Field. Annals of Mathematics Studies, vol. 107. Princeton, NJ: Princeton University Press, 1984.
  • 10Lusztig G. Character sheaves V. Adv Math, 1986, 61: 103-155.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部