期刊文献+

集值拟变分不等式的间隙函数和误差界

Gap Functions and Error Bounds for Set-valued Quasi-variational Inequalities
下载PDF
导出
摘要 首先研究集值拟变分不等式的间隙函数,然后利用该间隙函数建立集值拟变分不等式与优化问题间的等价关系,利用这一等价关系讨论集值拟变分不等式的误差界问题,这些结论是文献(Fan H J,Wang G X.Comput Appl Math,2010,233:2956-2965和Tang G J,Huang N J.Taiwan Residents J Math,2013,17:1267-1286.)中相关结果的推广. In this paper,we consider the gap functions for set-valued quasi-variational inequalities.Using these gap functions,we show the equivalence between optimization problem and the set-valued quasi-variational inequalities.With the obtained equivalence results,we study error bounds for the solutions of set-valued quasi-variational inequalities(Fan H J,Wang G X.Comput Appl Math,2010,233:2956-2965,and Tang G J,Huang N J.Taiwan Residents J Math,2013,17:1267-1286.).
作者 杨博 夏福全 YANG Bo XIA Fuquan(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期801-808,共8页 Journal of Sichuan Normal University(Natural Science)
基金 教育部科学技术重点项目(212147)
关键词 集值拟变分不等式 间隙函数 误差界 gap function set-valued map quasivariational inequality error bound
  • 相关文献

参考文献1

二级参考文献18

  • 1Long X J, Huang N J, Teo K L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints[J]. J Inequal Appl,2008,2008:657329.
  • 2Hu R, Fang Y P. Levitin-Polyak well-posedness of variational inequalities[J]. Nonlinear Anal:TMA,2010,72:373-381.
  • 3Kuratowski K. Topology:1 and 2[M]. New York:Academic Press,1968.
  • 4Tykhonov A N. On the stability of the functional optimization problem[J]. USSR J Comput Math Phys,1996,6:631-634.
  • 5Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[J]. Soveit Math Dokl,1996,7:764-767.
  • 6Zolezzi T. Well-posedness criteria in optimization with application to the calculus of variations[J]. Nonlinear Anal:TMA,1995,25:437-453.
  • 7Zolezzi T. Well-posedness of optimal control problems[J]. Control and Cybernetics,1994,23:289-301.
  • 8Zolezzi T. Extend well-posedness of optimization problems[J]. J Optim Theo Appl,1996,91:257-266.
  • 9Bednarczuk E M. Well-posedness of optimization problem[C]//Krabs J J W. Recent Advances and Historical Development of Vector Optimization Problems. Lecture Notes in Economics and Mathematical Systems. 294. Berlin:Springer,1987:51-61.
  • 10Fang Y P, Hu R. Parametric well-posedness for variational inequalities defined by bifunctions[J]. Comput Math Appl,2007,53:1306-1316.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部