摘要
首先研究集值拟变分不等式的间隙函数,然后利用该间隙函数建立集值拟变分不等式与优化问题间的等价关系,利用这一等价关系讨论集值拟变分不等式的误差界问题,这些结论是文献(Fan H J,Wang G X.Comput Appl Math,2010,233:2956-2965和Tang G J,Huang N J.Taiwan Residents J Math,2013,17:1267-1286.)中相关结果的推广.
In this paper,we consider the gap functions for set-valued quasi-variational inequalities.Using these gap functions,we show the equivalence between optimization problem and the set-valued quasi-variational inequalities.With the obtained equivalence results,we study error bounds for the solutions of set-valued quasi-variational inequalities(Fan H J,Wang G X.Comput Appl Math,2010,233:2956-2965,and Tang G J,Huang N J.Taiwan Residents J Math,2013,17:1267-1286.).
作者
杨博
夏福全
YANG Bo XIA Fuquan(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2016年第6期801-808,共8页
Journal of Sichuan Normal University(Natural Science)
基金
教育部科学技术重点项目(212147)
关键词
集值拟变分不等式
间隙函数
误差界
gap function
set-valued map
quasivariational inequality
error bound