期刊文献+

一类二次可逆中心的周期函数的单调性

Monotonicity for Period Functions of a Class of Quadratic Reversible Centers
下载PDF
导出
摘要 研究一类二次可逆中心周期轨道的周期单调性问题.首先给出该类中心周期函数的Taylor级数表达式,再根据Taylor级数表达式判定其周期函数是单调的. In this paper,we investigate the monotonicity of period function of periodic orbits for a class of quadartic reversible center.We firstly give the Taylor series expressions of the period function.Then,by the obtained Taylor series expressions of the period functions,we prove that the period function is monotone.
作者 吴奎霖 WU Kuilin(Department of Mathematics, Guizhou University, Guiyang 550025, Guizho)
机构地区 贵州大学数学系
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期857-860,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11301105) 贵州省科学技术基金(黔科合J字[2015]2036号)
关键词 二次可逆中心 周期函数 Lagrange-Bürmann逆定理 quadratic reversible centers period function Lagrange-Bürmann inversion theorem
  • 相关文献

参考文献1

二级参考文献27

  • 1Chow, S. N., Sanders, J. A.: On the number of critical points of period. J. Differential Equations, 64, 51-66 (1986).
  • 2Cima, A., Manosas, F., Villadelprat, J.: Isochronicity for several classes of Hamiltonian systems. J. Differ- ential Equations, 157, 373-413 (1999).
  • 3Coppel, W. A., Gavrilov, L.: The period functions of a Hamiltonian quadratic system. Differential Integral Equations, 6, 1357-1365 (1993).
  • 4Francoise, J. P.: The first derivative of the period function of a plane vector field. Publ. Math., 41, 127-134 (1997).
  • 5Gasull, A., Guillamon, A., Manosa, V., Mmaosa, F.: The period function for Hamiltonian system with homogeneous nonlinearities. J. Differential Equations, 139, 237-260 (1997).
  • 6Gasull, A., Guillamon, A., Villadelprat, J.: The period function for second-order quadratic ODES is monotone. Qual. Theory Dyn. Byst., 4, 329-352 (2004).
  • 7Gavrilov, L.: Remark on the number of critical points of period. J. Differential Equations, 101, 58--65 (1993).
  • 8Liang, H., Zhao, Y.: On the period function of reversible quadratic centers with their orbits inside quartics. Nonlinear Anal., 71, 5655-5671 (2009).
  • 9Zoladek, H.: Quadratic systems with center and their perturbations. J. Differential Equations, 109, 223- 273 (1994).
  • 10Chicone, C.: Review in MathSciNet, ref. 94hL58072.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部