期刊文献+

基于SVM分类的云集群失败作业主动预测方法 被引量:6

Predicting Job Failure in Cloud Cluster: Based on SVM Classification
原文传递
导出
摘要 提出了一种使用支持向量机(SVM)模型预测作业终止状态的方法.以Google数据集为研究对象,首先分析作业终止状态的影响因素,提出使用作业的静态特征和动态特征作为终止状态分类的特征向量,选择SVM模型主动预测终止状态;然后从特征向量和分类模型2个层面对准确率、假负率、精确度指标进行验证.特征向量实验结果表明,基于静态和动态特征的SVM预测模型比单独使用静态特征和动态特征,分别提高0.94%、-0.01%、1.35%和9.08%、-1.36%、10.91%.分类模型的比较结果显示,SVM分类预测方法比传统的神经网络模型、朴素贝叶斯模型、逻辑回归模型的预测效果好. A job failure predicting method based on support vector machine( SVM) model was presented. Google cluster traces were studied. The relevant factors of jobs failure were analyzed and the combination of the static and dynamic characteristic was chosen as the feature vectors. The SVM algorithm was chosen to predict termination status of the jobs. Experiments were conducted to compare different kinds of feature vectors and classification models with Google traces dataset in terms of the accuracy rate,false negative rate and precision rate. It is shown that the combination of static and dynamic features are0. 94%,-0. 01% and 1. 35% higher than the static features,and 9. 08%,-1. 36% and 8. 91%higher than the dynamic features. Experiments also demonstrate that the SVM model is superior to the traditional neural network extreme machine learning,naive Bayes and logistic regression model in these indexes.
作者 刘春红 韩晶晶 商彦磊 LIU Chun-hong HAN Jin-jin SHANG Yan-lei(College of Computer and Information Engineering, Henan Normal University, Henan Xinxiang 453002, China State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第5期104-109,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家重点基础研究发展计划(973计划)项目(2012CB315802) 国家关键技术研究与发展计划项目(2012BAH94F02) 河南省科技厅基础与前沿技术研究项目(132300410430)
关键词 失败作业预测 支持向量机模型 Google集群数据 predicting of jobs failure status support vector machine model Google cluster traces
  • 相关文献

参考文献1

二级参考文献7

  • 1张莉,郭军.基于边界样本的训练样本选择方法[J].北京邮电大学学报,2006,29(4):77-80. 被引量:15
  • 2Shawe-Taylor J. Classification accuracy based observed margin[J]. Algorithmica, 1998, 22(1): 157- 172.
  • 3He Qiang, Chen Junfen, He Ming, et al. The impact of linear transformation on SVM margin [ C ] // SMC 2006. Taipei: [s.n.], 2006: 819-823.
  • 4Zhang Xinfeng, Liu Yaowei. Experimental study on the margin and generalization of hyper-sphere SVM [ C ] // ICNC 2005. Beijing: [s.n.], 2008: 71-75.
  • 5Chen Dirong, Wu Qiang, Ying Yiming, et al. Support vector machine soft margin classifiers: error analysis[ J]. Journal of Machine Learning Research, 2004, 5 ( 5 ) : 1143-1175.
  • 6Scholkopf B, Platt J C, Shawe-Taylor J S, et al. Estimating the support of a high-dimensional distribution [ J ]. Neural Computation, 1999, 13(7): 1443-1471.
  • 7Vapnik V. Estimation of dependencies based on empirical data[M]. Translated by S. Kotz. New York: Springer- Verlag, 1982.

共引文献1

同被引文献9

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部