期刊文献+

基于数据驱动的模糊系统辨识研究 被引量:2

Research on Fuzzy System Identification Using Data Drive
下载PDF
导出
摘要 针对实际中某些过程无法确定其精确表达式的问题,研究了基于输入-输出数据的模糊建模方法。采用Mamdani模型和模糊基函数,以系统的输入-输出数据为基础,通过One-Pass、误差反向传播、查表法、最小二乘法这4种基于数据驱动的建模方法分别建立了Mackey-Glass混沌系统的模糊模型,用Mackey-Glass混沌数据验证了它们的有效性和实用性。对这4种方法的性能和适用场合做了分析说明,为实际过程的建模提供参考依据。在实际中,可根据需要选择合适的建模方法。 Due to the difficulty in getting the exact expression of some actual processes, fuzzy modeling method by input-output data is discussed in this paper. One-pass, back propagation, seeking table and least square are used to build Mackey-Glass chaos fuzzy model by Marndani fuzzy model and fuzzy basic function, which based on input-output datas. The effectiveness and practicality of these four methods are illustrated by Mackey-Glass chaos data. The performance and application conditions of these four methods are stated, providing reference for actual modeling. In practice, a suitable modeling method can be selected according to actual process.
作者 王新超 钱烽雷 WANGXinchao QIAN Fenglei(Jiangsu Power Design Institute Co. , Ltd. of China Energy Engineering Group, Nanjing 211102, China)
出处 《系统仿真技术》 2016年第3期223-227,234,共6页 System Simulation Technology
关键词 模糊基函数 模糊建模 反向传播 最小二乘 fuzzy basic function fuzzy modeling back propagation least square
  • 相关文献

参考文献1

二级参考文献22

  • 1Mendel J M,John R I. A fundamental decomposition of type-2 fuzzy sets[A]. IFSA World Congress and 20th NAFIPS International Conference,July,2001,Joint 9th,4:1896-1902.
  • 2Mendel J M. On the importance of interval sets in type-2 fuzzy logic systems[A]. IFSA World Congress and 20th NAFIPS International Conference[C]. July 2001,Joint 9th,3:1647-1652.
  • 3Karnik N N,Mendel J M. Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys[A]. Proc FUZZ-IEEE,1999,3(Aug.):1546-1551.
  • 4Mendel J M,John R I B. Type-2 fuzzy sets made simple[J]. IEEE Trans. Fuzzy Systs,2002,10(April):117-127.
  • 5Mendel J M. Uncertain rule-based fuzzy logic systems:introduction an new directions[M]. Printic Hall PTR,2001.
  • 6John R I, Czarnecki C. An adaptive type-2 fuzzy system for learning linguistic membership grades[J]. Proc FUZZ-IEEE,1999,3:1552-1556.
  • 7Liang Q L,Mendel J M. Interval type-2 fuzzy logic systems[A]. The 9th IEEE International Conf on Fuzzy Systs[C]. 2000,vol.1:328-333.
  • 8Torralba F C, Gachechiladze T, Meladze H, Tsertsvadze G. Fuzzy models of language structures[J]. IEEE Trans Fuzzy Systs,2002,10(Aug.):421-435.
  • 9Zadeh L A.The concept of a linguistic variable and its application to approximate reasoning-1[J]. Information Sciences,1970,8:199-249.
  • 10Karnik N N,Mendel J M. Operation on type-2 fuzzy sets[J].Fuzzy and Systems,2001,122:327-348.

共引文献25

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部