期刊文献+

基于深度学习模型的图像质量评价方法 被引量:11

Image quality assessment based on deep learning model
原文传递
导出
摘要 为了有效提取与视觉感知质量高度相关的图像特征,改进图像质量评价方法,在深度学习的框架下,提出一个全新的卷积神经网络IQF-CNN结构,能自动学习判别性更强的图像质量特征,并利用学习的特征进行图像质量评价.同时,该算法采用局部亮度系数归一化、dropout等技术进一步提高网络学习能力.实验结果表明:该算法能较准确地评估五种常用的图像失真,尤其在JPEG压缩、JPEG2000压缩和高斯模糊图像失真上与人眼主观感知质量具有很高的一致性,整体性能比较优于其他经典评价方法. Extracting image features highly correlated with visual perception is important for mage quality assessment .In this paper ,a novel convolution neural network IQF-CNN(convolutional neural network based on image quality features) was proposed .This model learned more discriminative im-age quality features ,and used the learned features for image quality assessment .Meanwhile ,the local luminance coefficients normalization and dropout technology were used to improve the model learning ability .The experimental results show that the algorithm can accurately evaluate the five common im-age distortions ,especially for JPEG ,JPEG2000 and BLUR .The overall performance is better than other classical assessment methods .
作者 李琳 余胜生 Li Lin Yu Shengsheng(School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第12期70-75,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 湖北省科技支撑计划资助项目
关键词 深度学习 卷积神经网络 特征学习 无参考图像质量评价 归一化 deep learning convolutional neural network feature learning no-reference image quality assessment normalization
  • 相关文献

参考文献1

二级参考文献22

  • 1Zilly F, Kluger J, Kauff P. Production rules for stereo acquisition[J]. Proceedings of the IEEE, 2011, 99(4): 590-606.
  • 2Urey H, Chellappan K V, Erden E, et al. State of the art in stereoscopicand autostereoscoic displays[J]. Proceedings of theIEEE, 2011, 99(4): 540-555.
  • 3You J Y, Xing L, Perkis A, et al. Perceptual quality assessmentfor stereoscopic images based on 2D image quality metrics anddisparity analysis[OL]. [2015-06-21]. http://events.engineering.asu.edu/vpqm/vpqm10/Proceedings_VPQM2010/vpqm_p09.pdf.
  • 4Benoit A, Le Callet P, Campisi P, et al. Using disparity forquality assessment of stereoscopic images[C] //Proceedings ofthe 15th IEEE International Conference on Image Processing.Los Alamitos: IEEE Computer Society Press, 2008: 389-392.
  • 5Bensalma R, Larabi M C. A perceptual metric for stereoscopicimage quality assessment based on the binocular energy[J].Multidimensional Systems and Signal Processing, 2013, 24(2):281-316.
  • 6Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality[J]. IEEETransactions on Image Processing, 2011, 20(12): 3350-3364.
  • 7Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.
  • 8Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on ImageProcessing, 2012, 21(12): 4695-4708.
  • 9Hinton G E, Osindero S, Teh Y W. A fast learning algorithm fordeep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
  • 10Salakhutdinov R, Hinton G. Deep Boltzmann machines[J].Journal of Machine Learning Research-Proceedings Track,2009, 9(1): 448-455.

共引文献18

同被引文献68

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部