期刊文献+

Ni^(25+)离子1s^2nd-1s^2n'f(n≤9)偶极跃迁振子强度的理论计算 被引量:1

Theoretical Calculations on Oscillator Strengths of 1s^2nd-1s^2n'f(n≤9)Dipole Transitions for Ni^(25+) Ion
下载PDF
导出
摘要 利用多组态相互作用方法构造了高离化Ni25+离子1s2nl(n≤9,l=d,f)Rydberg序列的波函数,计算了1s2nd-1s2n'f(3≤n≤9;4≤n'≤9)偶极跃迁在长度、速度和加速度三种规范下的振子强度,得到的计算结果彼此符合的较好.本文还将振子强度与量子亏损理论相结合,计算了从任一给定初态到末态所有分立态和连续态的振子强度和振子强度密度,实现了全能域光谱特性的理论预言. The wave function of1s2nl (n≤9,l=d,f) states for highly charged Ni25+ ion is constructed with multi-configuration interaction method. The oscillator strengths in length, velocity and acceleration expressions for 1s2 nd-1s2n'f (n,n' ≤9) dipole transitions are calculated, the agreement among them is satisfying. Combining theoscillator strength with the single channel quantum defect theory, the discreet oscillator strengths and oscillatorstrength density corresponding to the bounding-free transition from a certain initial state to all the final states are obtained.
作者 王怡 么思萌 于爽 张静怡 胡木宏 刘丽娟 Wang Yi Yao Simeng Yu Shuang Zhang Jingyi Hu Muhong Liu Lijuan(School of Physics and Electronic Technology, Liaoning Normal University, Dalian Liaoning 116029)
出处 《首都师范大学学报(自然科学版)》 2016年第6期25-28,24,共5页 Journal of Capital Normal University:Natural Science Edition
基金 国家自然科学青年基金(11204118) 国家自然科学基金(1107410)
关键词 高离化态 波函数 振子强度 量子亏损理论 :highly ionized state wavefunction oscillator strengths quantum defect theory.
  • 相关文献

参考文献2

二级参考文献28

  • 1Kono A and Hattori S 1984 Phys. Rev. A 30 2093
  • 2Cann K M and Thakkar A J 1992 Phys. Rev. A 46 5397
  • 3Drake G W F 1996 Atomic, Molecular, and Optical Physics Handbook (New York: AIP Press) p154
  • 4Yan Z C, Tambasco and Drake G W F 1998 Phys. Rev. A 57 1652
  • 5Chung K T 1991 Phys. Rev. A 44 5421
  • 6Wang Z W and Chung K T 1994 J. Phys. B 27 855
  • 7Guan X X and Wang Z W 1998 Phys. Lett. 15 489
  • 8Ge Z M, Wang Z W, Zhou Y J, He L M and Liu G G 2003 Chin. Phys. 12 488
  • 9Hu M H and Wang Z W 2004 Chin. Phys. 13 662
  • 10Hu M H and Wang Z W 2004 Chin. Phys. 13 1246

共引文献6

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部