期刊文献+

面向火星表面层状硅酸盐识别的模型研究 被引量:3

Study on Recognition Model of Phyllosilicate of Martian Surface
下载PDF
导出
摘要 层状硅酸盐是火星表面含水矿物的主要存在形式之一,也是比较火星不同沉积物和水蚀作用程度的指示矿物,因此构建其识别模型对研究火星的地质演化极其重要。短波红外和热红外谱段对矿物的基团、离子光谱响应机理不同,具有不同的识别优势,然而国内外联合两者识别层状硅酸盐矿物则鲜有研究。基于USGS光谱库数据,面向火星探测器紧凑型侦查成像光谱仪(CRISM)和热辐射成像系统(THEMIS),在层状硅酸盐的光谱响应机理研究基础之上,分别构建短波红外识别模型与热红外模型,进而结合短波红外和热红外谱段,基于Fisher判别分析构建层状硅酸盐的综合识别模型。交叉验证表明,综合模型识别精度优于短波红外模型和热红外模型,对90.6%的矿物样本正确识别,有效提高了层状硅酸盐的识别精度。 Phyllosilicate belongs to hydrated silica,which is a principal form of hydrous minerals on the martian surface.It's also an indicator in comparing different sediments and degree of aqueous alteration.Therefore,it's essential to establish its recognition model for studying the geologic evolution of the Mars.Short-wave infrared(SWIR)spectral bands and thermal infrared(TIR)spectral bands have distinct spectral response to the mineral groups and ions,so they have distinctive advantages in detecting minerals.However the method of combining SWIR and TIR to recognize phyllosilicate is rarely studied.Based on the USGS spectral library,facing Compact Reconnaissance Imaging Spectrometer for Mars(CRISM)and Thermal Emission Imaging System(THEMIS),we conducted the research on the mechanism of the spectral response of phyllosilicate,and established the SWIR and TIR identification model respectively,then combined the SWIR and TIR spectral features to build the combined recognition model of phyllosilicate with Fisher discriminant analysis.The results of cross validation show that the identification accuracy of combined model is the highest,which can correctly classify 90.6% of the mineral samples and improve the identification precision of phyllosilicate effectively.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第12期3996-4000,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(41671360) 国家"863"计划项目(2013AA12A302)资助
关键词 高光谱 短波红外 热红外 层状硅酸盐 火星 Hyperspectral remote sensing Short-wave infrared Thermal infrared Phyllosilicate Mars
  • 相关文献

参考文献1

二级参考文献9

  • 1于一凡,潘军,邢立新,蒋立军,孟涛,韩晓静,周彩彩.基于马氏距离的遥感图像高温目标识别方法研究[J].遥感信息,2013,28(5):90-94. 被引量:17
  • 2朱怀松,刘晓锰,裴欢.热红外遥感反演地表温度研究现状[J].干旱气象,2007,25(2):17-21. 被引量:47
  • 3Pan J,Xing L X,Wen J C,ei al. Inversion method study on short waveinfrared remote sensing data high temperature surface feature tempera-ture. Image and Signa Processing,2009; (2) :1-4.
  • 4朱亚静.高温地物目标短波红外遥感识别及温度反演.长春..吉林大学,2012.
  • 5Yu Yifan,Pan Jun,Xing Lixin,ef al. Identification of high temperaturetargets in remote sensing imagery based on factor analysis. Journal ofApplied Remote Sensing,2014;B( 1) :18.
  • 6US Geological Survey. Landsat-A Global Land-Imaging Mission,2012 06. http://pubs. usgs. gov/fs/2012/3072/[2014 10].
  • 7Taylor Mike. Operational Land Imager ( OLI) . 2012 12. http://www. nasa. gov/mission _ pages/landsat/main/LDCM _ OLI _ intro, html,[2014.10].
  • 8朱亚静,邢立新,潘军,孟涛,闻久成,王红红,乔振民,黄竞铖.短波红外遥感高温地物目标识别方法研究[J].遥感信息,2011,33(6):33-36. 被引量:19
  • 9初庆伟,张洪群,吴业炜,冯钟葵,陈勃.Landsat-8卫星数据应用探讨[J].遥感信息,2013,28(4):110-114. 被引量:93

共引文献8

同被引文献64

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部