期刊文献+

燃烧法合成La2Zr2O7粉及其光谱性能 被引量:1

Preparation of La_2Zr_2O_7 Powder with Combustion Method and Its Spectral Properties
下载PDF
导出
摘要 以La_2O_3,Zr(NO_3)_4和甘氨酸为原料,采用燃烧法合成La_2Zr_2O_7粉。分别用发射光谱法(ICPAES)、能谱法(EDAX)、X衍射法(XRD)、红外光谱法(IR)和热重-差热法(TG-DTA)等对La_2Zr_2O_7粉进行表征。分别研究了热处理温度对La_2Zr_2O_7粉的X衍射谱和红外光谱的影响。La_2Zr_2O_7粉的ICP-AES和EDAX分析结果表明,用燃烧法可合成出La_2Zr_2O_7粉。不同温度热处理后La_2Zr_2O_7粉的XRD分析结果表明,当热处理温度为600℃时,出现一个衍射峰,且衍射峰较宽,该结构为半晶型结构;提高热处理温度,衍射峰逐渐尖锐,峰形变窄,衍射峰逐渐增多;热处理温度在750~800℃范围,可得到烧绿石结构的La_2Zr_2O_7粉。在650~750℃热处理后La_2Zr_2O_7粉的红外光谱分析结果与XRD分析结果相同,热处理温度为750℃时,可得到烧绿石结构的La_2Zr_2O_7粉。La_2Zr_2O_7粉的TG-DTG分析结果表明,在120~1 600℃范围,La_2Zr_2O_7粉的结构稳定。 La_2Zr_2O_7 powder was prepared with combustion method with La_2O_3,Zr(NO_3)_4 and glycine as raw materials.La_2Zr_2O_7 powders were characterized with ICP-AES,EDAX,XRD,IR and TG-DTA techniques,respectively.Effects of heat treatment temperature on the XRD spectra and IR spectra of La_2Zr_2O_7 powders were studied.The X-ray diffraction pattern of La_2Zr_2O_7 powder after heat treatment at 600 ℃ has one diffraction peak,and the diffraction peak is quite broad,therefore,the crystal structure of the La_2Zr_2O_7 powder is semi-crystal structure.With the increase of heat treatment temperature,diffraction peaks become gradually sharp and increase.The crystal structure of the La_2Zr_2O_7 powders after heat treatment in 750~800 ℃are pyrochlore structure.Analysis results of IR spectra of La_2Zr_2O_7 powders after heat treatment in 650~750 ℃ show that the crystal structure of the La_2Zr_2O_7 powders after heat treatment at 750℃is pyrochlore structure,and the analysis results of XRD and IR are the same.Analysis results of TG-DTG of La_2Zr_2O_7 powders show that the crystal structure of the La_2Zr_2O_7 powders are stability in 120~1 600 ℃.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第12期4063-4066,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51172144,51372153) 上海市高峰高原学科项目(0817) 上海高校特聘教授(东方学者)岗位计划项目(DF2009-02)资助
关键词 燃烧法 La2Zr2O7粉 X衍射谱 能谱 红外光谱 Combustion method La2Zr2O7 powder XRD EDAX IR
  • 相关文献

参考文献1

二级参考文献16

  • 1Gupta M, Curry N, Nyl6n P, et al. Surface and Coatings Technology, 2013, 220: 20.
  • 2Joulia A, Vardelle M, Rossignol S. Journal of the European Ceramic Society, 2013, 33: 2633.
  • 3Waki H, Nishikawa I, Kobayashi A. Vacuum, 2013, 88: 93.
  • 4Keller I, Naumenko D, Quadakkers W J, et al. Surface and Coatings Technology, 2013, 215: 24.
  • 5Chen H, Hyde T H, Voisey K T, et al. Materials Science and Engineering: A, 2013, 585: 205.
  • 6Todde S, Licheri R, Orr R, et al. Chemical Engineering Journal, 2012, 200: 68.
  • 7Song P, Naumenko D, Vassen R. Surface and Coatings Technology, 2013, 221: 207.
  • 8Shokati A A, Parvin N, Sabzianpour N, et al. Journal of Alloys and Compounds, 2013, 549:141.
  • 9Ho C Y, Patil R B, Wang C C, et al. Surface Science, 2012, 606: 1173.
  • 10Lamastra F R, Cacciotti I, Bellucci A, et al. Intermetallics, 2012, 22: 241.

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部