期刊文献+

改进视觉词袋模型的快速图像检索方法 被引量:3

Fast Image Retrieval Method Using Improved Bag of Visual Words Model
下载PDF
导出
摘要 视觉词袋模型在基于内容的图像检索中已经得到了广泛应用,传统的视觉词袋模型一般采用SIFT描述子进行特征提取.针对SIFT描述子的高复杂度、特征提取时间较长的缺点,本文提出采用更加快速的二进制特征描述子ORB来对图像进行特征提取,建立视觉词典,用向量间的距离来比较图像的相似性,从而实现图像的快速检索.实验结果表明,本文提出的方法在保持较高鲁棒性的同时,明显高了图像检索的效率. Bag of visual words model based on content-based image retrieval has been widely used, traditional bag of visual words model generally uses the SIFT descriptors for feature extraction. In view of the high complexity of SIFT descriptors and the long time of feature extraction, this paper proposes to use a faster binary feature descriptor ORB for the image feature extraction, creating visual dictionary, using the distance between two vectors to compare the image similarity, so as to achieve fast image retrieval. Experimental results show that the method proposed in this paper can improve the efficiency of image retrieval obviously, while maintains a relatively high robustness.
出处 《计算机系统应用》 2016年第12期126-131,共6页 Computer Systems & Applications
基金 国家自然科学基金(61371040)
关键词 视觉词袋模型 局部特征 ORB 图像检索 bag of visual words local features ORB image retrieval
  • 相关文献

参考文献3

二级参考文献39

  • 1徐正光,武楠,穆志纯.基于独立分量分析的人耳识别方法[J].计算机工程,2006,32(19):178-180. 被引量:7
  • 2Sivic J. Video Google: A Text Retrieval Approach to Object Matching in Videos[C]//Proc. of the International Conf. on Computer Vision. Nice, France: IEEE Press, 2003.
  • 3Lopez-Sastre R J, Tuytelaars T, Acevedo-Rodriguez F J, et al. Towards a More Discriminative and Semantic Visual Voca-bulary[J]. Computer Vision and Image Understanding, 2010, 115(3): 415-425.
  • 4Elsayad I, Martinet J, Urruty T, et al. A New Spatial Weighting Scheme for Bag-of-visual-words[C]//Proc. of IEEE International Workshop on Content-Based Multimedia Indexing. Grenoble, France: IEEE Press, 2010.
  • 5Ding Guiguang, Wang Jianmin, Qin Kai. A Visual Word Weighting Scheme Based on Emerging Itemset for Video Annotatio[J]. Information Processing Letters, 2010, 110(16): 692-696.
  • 6Sonnenburg S. Large Scale Multiple Kernel Learning[J]. Journal of Machine Learning Research, 2006, 7(1): 1531-1565.
  • 7Chang Chih-Chung, Lin Chih-Jen. LIBSVM: A Library for Support Vector Machines[EB/OL]. (2011-11-05). http://www.csie. ntu.edu.tw/cjlin/.
  • 8van Gemert J C, Veenman C J, Smeulders A W M. Visual Word Ambiguity[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 32(7): 1271-1283.
  • 9Yang Jun, Jiang Yugang, Hauptmann A G, et al. Evaluating Bag-of-Visual-Words Representations in Scene Classification[C]// Proc. of ACM SIGMM International Workshop on Multimedia Information Retrieval. New York, USA: ACM Press, 2007.
  • 10Burge M, Burger W. Using ear biometrics for passive identification. Proc. of the IFIP TCII 14th International Conference on Information Security (SEC). 1998, 98. 139-148.

共引文献8

同被引文献12

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部