期刊文献+

Applications of integrative OMICs approaches to gene regulation studies 被引量:1

Applications of integrative OMICs approaches to gene regulation studies
原文传递
导出
摘要 Functional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their own, fike the parable of blind men and an elephant, any one single technology has a limited ability to depict the complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology and medicine. It provides a precise and effective way to study gene regulations. Results: This article reviews current popular OMICs technologies, OMICs data integration strategies, and bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods, particularly in elucidating molecular basis of biological regulatory mechanisms. Conclusions: To better understand the complexity of biological processes, we need powerful bioinformatics tools to integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level gene regulations and serves as a foundation for further hypothesis-driven research. Functional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their own, fike the parable of blind men and an elephant, any one single technology has a limited ability to depict the complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology and medicine. It provides a precise and effective way to study gene regulations. Results: This article reviews current popular OMICs technologies, OMICs data integration strategies, and bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods, particularly in elucidating molecular basis of biological regulatory mechanisms. Conclusions: To better understand the complexity of biological processes, we need powerful bioinformatics tools to integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level gene regulations and serves as a foundation for further hypothesis-driven research.
出处 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2016年第4期283-301,共19页 中国电气与电子工程前沿(英文版)
基金 Our work was supported by a Direct Grant for Research from The Chinese University of Hong Kong, Hong Kong SAR, China (No. 4053150) to JQ, research grants from Research Grants Council, Hong Kong SAR, China (No. 17121414M), the National Natural Science Foundation of China (Nos. 81572786 and 91529303), startup funds from Mayo Clinic (Mayo Clinic Arizona and Center for Individualized Medicine) to JW, and the National Natural Science Foundation of China (No. 11526144) and the Natural Science Foundation of Guangdong (No. 2016A030310038) to YH.
关键词 gene regulatory networks integrative analysis OMICS ChlP-seq RNA-SEQ gene regulatory networks integrative analysis OMICs ChlP-seq RNA-seq
  • 相关文献

参考文献1

二级参考文献1

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部