期刊文献+

CRISPR-Cas9植物基因编辑系统敲除拟南芥AG基因表达载体的构建 被引量:6

The Construction of Expression Vector of Knocking Out AG Gene in Arabidopsis thaliana by CRISPR-Cas9
原文传递
导出
摘要 CRISPR-Cas系统是细菌和古细菌在进化过程中逐渐形成的一种适应性免疫系统,通过sg RNA介导对靶位点进行定位并利用Cas酶对核酸实现双链断裂(double-strand break,DSB)。CRISPR-Cas系统作为一种新兴的基因定点编辑技术逐渐成熟并在多个植物中成功得到应用,以此技术对目的基因进行靶向的敲除或敲入。本实验以拟南芥AG基因为基础,构建CRISPR-Cas9植物基因编辑系统敲除拟南芥AG基因的表达载体,并利用农杆菌介导CRISPR-Cas9植物基因编辑系统敲除拟南芥AG基因,以获得高效的敲除拟南芥基因的遗传转化体系。 The CRISPR-Cas system is a kind of adaptive immune system,which was gradually formed in the evolutionary process of bacteria and archaea.The CRISPR-Cas system positions to the targeted point with sg RNA,and the nucleic acid is double-strand brokenby Cas enzyme.CRISPR-Cas system as a new gene fixed-point editing techniques has been successful applied in many plants.Targeted genes can be targeting knock-out and knock-in by the technology of CRISPRs.The experiment is based on the AG gene of Arabidopsis thaliana,and construced a vector which knockout AG gene by CRISPR-Cas9 system,and then the high efficient genetic transformation system is obtained which can knockout Arabidopsis thaliana genes by using the agrobacterium-mediated genetic transformation of CRISPR-Cas9 system.
出处 《分子植物育种》 CAS CSCD 北大核心 2016年第3期593-597,共5页 Molecular Plant Breeding
关键词 CRISPR-Cas9 基因敲除 拟南芥 AG 遗传转化 CRISPR-Cas9 Gene knockout Arabidopsis thaliana AG Genetic transformation
  • 相关文献

参考文献3

二级参考文献55

  • 1Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843-1845.
  • 2Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010, 11(3): 181-190.
  • 3Mojica FJM, D I ez-Villasefior C, Garc ~ a-Mart f nez J, A1- mendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(Pt 3): 733-740.
  • 4Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in orokarvotes. Science, 2008, 321(5891): 960-964.
  • 5Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5): 945-956.
  • 6Marraffini LA, Sontheimer EJ. Self versus non-self discrimi- nation during CRISPR RNA-directed immunity. Nature, 463(7280): 568-571.
  • 7Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
  • 8Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D. Germ warfare in a microbial mat community: CRISPRs provide in- sights into the co-evolution of host and viral genomes. PLoS One, 2009, 4(1): e4169.
  • 9Wilmes P, Simmons SL, Denef VJ, Banfield JF. The dynamic genetic repertoire of microbial communities. FEMS Microbiol Rev, 2009, 33(1): 109-132.
  • 10Greve B, Jensen S, Br ia gger K, Zillig W, Garrett RA. Ge- nomic comparison of archaeal conjugative plasmids from Sulfolobus. Archaea, 2004, 1 (4): 231-239.

共引文献173

同被引文献39

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部