期刊文献+

美式股票期权的定价研究:平安股票期权的例证

全文增补中
导出
摘要 上证50ETF期权的问世开启了中国股票期权的时代,中国股票期权市场发展潜力巨大,未来的几年将会迅速发展壮大,投资者可以通过购买股票期权进行风险规避或投机获利。本文采用GARCH模型进行参数估计,将股票价格的波动率用该模型预测的波动率代替,以此预测股票价格上升或是下降的概率。并运用二叉树模型对中国平安股票的美式看涨期权和看跌期权进行定价。最后,从扩大股票期权模拟交易规模、提升股票期权参与者的认知水平、提供完备的监管机制和应急方案三个层面提出了中国股票期权市场顺利起步和发展之对策。 The advent of Shanghai 50 ETF begins the era of stock option in China. The development of Chinese stock option market has huge potentials, the stock option market will be developed rapidly in the next few years, and investors can buy stock options to avoid risks or obtain speculative profits. Using the GARCH model to estimate parameters, taking the place of stock price volatility with predict volatility which is produced by using GARCH model, we can predict the probability of stock price rise or fall. This paper prices American call options and put options of China's Ping An shares by using binary tree model. Finally, suggestions are provided from the expansion of stock options to simulate the scale of trading, improve the cognitive level of stock option participants, and provide complete supervision mechanism and emergency plans.
出处 《企业经济》 北大核心 2016年第12期187-192,共6页 Enterprise Economy
基金 黑龙江省社科基金项目"黑龙江省农村金融生态系统评价与发展研究"(项目编号:15JYD03)
关键词 美式股票期权 GARCH 二叉树 American stock options GARCH binary tree model
  • 相关文献

参考文献5

二级参考文献59

  • 1李秉祥.对欧式期权B-S模型的推广[J].西安理工大学学报,2003,19(4):377-381. 被引量:12
  • 2周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 3魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 4Andersen, T. G. , T. Bollerslev, and S. Lange, Forecasting Financial Market Volatility : Sample Frequency vis -a -vis Forecast Horizon [J], Journal of Empirical Finance. 1999, 6 (5): 457-477.
  • 5Bates, D. , The Crash of 87: Was It Expected? The Evidence from Options Markets [J], The Journal of Finance. 1991, 46 (3): 1009-1044.
  • 6Black F. , and M. Scholes, The Pricing of Options and Corporate Liabilities[J], Journal of Political Economy. 1973, 81 (3) : 637-654.
  • 7Blair, B. J. , S. H. Poon, and S. J. Taylor, Forecasting S&P 100 Volatility : The Incremental Information Content of Implied Volatilities and High - Frequency Index Returns [J], Journal of Econometrics. 2001, 105 (1): 5-26.
  • 8Bollerslev, T. , Generalized Autoregressive Conditional Heteroskedasticity [J], Journal of Econometrics. 1986, 31 (3): 307-28.
  • 9Canina, L. , and S. Figlewski, The Informational Content of Implied Volatility [J], Review of Financial Studies. 1993, 6 (3): 659-681.
  • 10Christensen, B. J. , and N. R. Prabhala, The Relation between Implied and Realized Volatility [J], Journal of Financial Economics. 1998, 50 (2) : 125-150.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部