期刊文献+

稳健方法在线性回归模型中的应用 被引量:3

Robust methods applied in linear regression models
下载PDF
导出
摘要 从影响函数和崩溃点角度分析了线性回归模型中最小二乘估计的不稳健性,进而引出M估计这类稳健估计,从理论上分析稳健估计的抗差性,并用R软件对实际数据进行实证研究.结果表明,在处理含有异常点的数据过程中,稳健估计优于最小二乘估计. This paper considers some estimators in linear regression model, least-squares estimator is Confirmed the lack of robustness by analyzing their influence function and breakdown point, robust estimators such as M-estimator is investigated. In addition, the resistant of the robust estimators are analyzed theoretically and empirical application to the actual data by R software illustrates that robust estimators are significantly superior to least squares estimate when data contain outliers.
作者 余云彩
出处 《湖北师范学院学报(自然科学版)》 2016年第4期35-39,共5页 Journal of Hubei Normal University(Natural Science)
关键词 线性回归模 M估计 稳健性 linear regression model M-estimator robustness
  • 相关文献

参考文献1

二级参考文献4

  • 1Huber,P. J.Robust regression, Ann[].Statistica.1973
  • 2Wu,Y. H.Strong consistency and exponential rate of the "minimum L1-norm" estimates in linear regression models[].Computational Statistics.1988
  • 3Bannett,G.Probability inequalities for sums of independent random variables, J.Amer. Statist[].Assoc.1962
  • 4Zhao,L. C.Rates of a.s. convergence of the estimation of error variance in linear models, Chin. Ann. of Math[].Ser B.1983

共引文献3

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部