期刊文献+

推进剂贮箱零件侧翻孔电磁成形数值模拟 被引量:5

Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts
原文传递
导出
摘要 基于ANSYS多物理场耦合模块,采用松散耦合法,建立了推进剂贮箱零件侧翻孔电磁成形的有限元模型,揭示了坯料电磁力、应力、应变和厚度等的分布规律及其随时间变化规律,并优化了放电电压和成形线圈内径等工艺参数。分析结果表明:坯料在圆角区域应力和应变较大,且厚度减薄量较大;坯料圆角处残余应力较大。放电电压增大,坯料变形量增加,但厚度减薄量相应增加;线圈内径增大,坯料与模具最大间隙、最大夹角以及坯料最小厚度均先减小后增大。得到的放电电压和成形线圈内径优化值分别为40 kV和40 mm。 A finite element model of the side hole flanging for propellant tank parts in the electromagnetic forming process was established based on the multi-physics coupling module and the loose coupling method,and the distribution of the electromagnetic force,stress,strain and thickness of the blank and their variations with time were revealed. Furthermore,the process parameters of the discharge voltage and the coil inner diameter were optimized. The analysis results show that the stress and strain of blank are bigger at the round corner area with a larger thickness reduction and a larger residual stress at the round corner area. With the increase of the discharge voltage,the deformation of blank increases,while the thickness reduction increases correspondingly. As the coil inner diameter increases,the maximum clearance and the maximum angle between die and blank,and the minimum thickness of the blank decrease firstly and then increase. Finally,the optimum values of the discharge voltage and the coil inner diameter are 40 k V and 40 mm respectively.
出处 《锻压技术》 CAS CSCD 北大核心 2016年第12期53-61,共9页 Forging & Stamping Technology
基金 国家重点基础研究发展计划资助项目(2011CB012802) 国家自然科学基金资助项目(51575206) 中国航天科技集团公司航天科技创新基金资助项目(CASC150704)
关键词 推进剂贮箱 电磁成形 侧翻孔 松散耦合 ANSYS propellant tank electromagnetic forming side hole flanging loose coupling method ANSYS
  • 相关文献

参考文献3

二级参考文献20

  • 1江洪伟,李春峰,赵志衡,李忠,于海平.电磁成形技术的最新进展[J].材料科学与工艺,2004,12(3):327-331. 被引量:23
  • 2于海平,李春峰,李忠.基于FEM的电磁缩径耦合场数值模拟[J].机械工程学报,2006,42(7):231-234. 被引量:8
  • 3韩飞,莫健华,黄树槐.电磁成形技术理论与应用的研究进展[J].锻压技术,2006,31(6):4-8. 被引量:11
  • 4American Society for Metals. ASM handbook (volume 14): Forming and forging[M]. Ohio: ASM International Handbook Committee, 1988: 1420-1425.
  • 5THOMAS J D, SETH M, DAEHN G S, BRADLEY J R, TRIANTAFYLLIDIS N. Forming limits for electromagnetically expanded aluminum alloy tubes: Theory and experiment[J]. Acta Materialia, 2007, 55(8): 2863-2873.
  • 6AL-HASSANI S T S. Magnetic pressure distribution in the sheet metal forming[C]//Electrical Methods of Machining, Forming and Coating, Institute of Electrical Engineering Conference, 1975:1- 10.
  • 7TAKATSU N, KATO M, KEIJIN S, TOSHIMI T. High-speed forming of metal sheets by electromagnetic force[J]. Japan Society of Mechanical Engineers International Journal: Series III, 1988, 31(1): 142-148.
  • 8CORREIA J P M, SIDDIQUI M A, AHZI S, BELOUSTTAR S, DAVIES R. A simple model to simulate electromagnetic sheet free bulging process[J]. International Journal of Mechanical Sciences, 2008, 50(10/11): 1466-1475.
  • 9LEE S H, LEE D N. A finite element analysis of electromagnetic forming for the tube expansion[J]. Journal of Engineering Materials and Technology, 1994, 116(2): 250-254.
  • 10IMBERT J M, WRINKLER S L, WORSWICK M J, OLIVEIRA D A, GOLOVASHCHENKO S. The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet[J]. Journal of Engineering Materials and Technology, 2005, 127(1): 145-153.

共引文献26

同被引文献41

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部