期刊文献+

高铁圆端形空心高墩日照温度场数值分析 被引量:14

Numerical Analysis of Solar Radiation Temperature Fields of Round End Hollow Tall Pier for High-Speed Railway Bridge
下载PDF
导出
摘要 为获得山区高速铁路圆端形空心高墩任意高度处的三维日照温度场及温度变形规律,以合福高铁南平建溪特大桥的68m圆端形空心高墩为例,通过建立高墩截面的二维温度场有限元模型,并采用三维插值算法将其拓展至三维温度计算模型,计算分析了高墩径向、竖向温度场,以及高墩在日照作用下的变形特征。结果表明:高墩在日照作用下,径向温度沿壁厚方向变化符合负指函数变化规律,日照温度影响深度约为0.60m;桥墩表面竖向温度符合负指数加线性函数变化规律;在日照作用下,墩顶最大水平位移和墩顶转角均发生在18:00左右,最大位移为12.9mm,最大转角为0.261‰rad,可取18:00左右的温度场作为控制荷载,对桥墩结构的变形进行检算。 To acquire the three-dimensional solar radiation temperature fields and the tempera- ture deformation laws of the arbitrary height of the round end hollow tall pier for mountainous high-speed railway bridge, the 68 m high round end hollow tall pier of Nanping Jianxi River Bridge on Heifei-Fuzhou High-Speed Railway was taken as an example and by way of establishing the two-dimensional temperature field finite element model for the section of the pier and using the three-dimensional interpolation method, the finite element model was expanded into a three-dimen- sional temperature calculation model, the radial and vertical temperature fields and the deformation characteristics of the pier under the solar radiation were calculated and analyzed. The results of the calculation and analysis indicate that under the solar radiation, the changing of the radial tempera- tures along the direction of the wall thickness of the pier accords with the changing law of the neg- ative exponential function and the influenced depth of the solar radiation temperature is about 0. 60 m. The changing of the vertical temperatures on the surface of the pier accords with the changing laws of the negative exponential function and linear function. Under the solar radiation, the maximum horizontal displacement and the maximum rotation angle of the pier top all occur at about 18:00 hour, of which the maximum displacement is 12.9 mm and the maximum rotation angle is 0. 261‰ rad and the temperature fields of the pier at the 18:00 hour can be selected as the temperature control load for the checking calculation of the deformation of the pier structure.
出处 《桥梁建设》 EI CSCD 北大核心 2016年第6期67-72,共6页 Bridge Construction
基金 国家自然科学基金资助项目(51378503) 中国铁路总公司科技研究开发计划资助项目(2015G001-K 2014G001-D)~~
关键词 高速铁路桥 空心高墩 日照作用 温度梯度 有限元法 温度场分析 high-speed railway bridge hollow tall pier solar radiation temperature gradient finite element method temperature field analysis
  • 相关文献

参考文献4

二级参考文献29

  • 1张子明,Garga,VK.寒潮时大体积混凝土的温度应力[J].河海大学学报(自然科学版),1994,22(6):94-97. 被引量:8
  • 2彭友松,强士中,李松.圆形空心墩日照温度效应分析[J].桥梁建设,2006,36(4):74-77. 被引量:21
  • 3张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报,2006,39(9):39-42. 被引量:84
  • 4谢尚英.广州猎德大桥索塔日照温度效应分析[J].桥梁建设,2007,37(2):72-75. 被引量:17
  • 5刘兴法.混凝土桥梁的温度分布.铁道工程学报,1985,(1):107-111.
  • 6AASHTO. AASHTO Guide Specifications, Thermal Effects in Concrete Bridge Superstructures[S]. Washington D C: American Association of State Highway and Transportation Officals, 1989.
  • 7BRANCO F A, MENDES P A. Thermal Actions for Concrete Bridge Design [J].. Journal of Structural Engineering, 1993, 119(8): 2313-2331.
  • 8ROBERTS C L, BREEN J E, JASON C. Measurements of Thermal Gradients and Their Effects on Segmental Concrete Bridge[J]. Journal of Bridge Engineering, 2002, 7(3) : 166-174.
  • 9British Standard. BS EN 1990: 2002. Eurocode-Basis of Structural Design[S]. London: British Standards Institution, 2002,.
  • 10POTGIETER I C, GAMBLE W L. Response of Highway Bridges to Nonlinear Temperature Distributions[R]. Urbana: University of Illinois Engineering Experiment Station, 1983.

共引文献39

同被引文献112

引证文献14

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部