期刊文献+

二维TM波时域非连续伽略金算法理论数值通量研究 被引量:4

Study on numerical flux of node DGTD method:TM case
下载PDF
导出
摘要 采用数值通量的方式进行场量交互是时域非连续伽略金(Discontinuous Galerkin Time Domain,DGTD)算法区别于时域有限元(Finite Element Time Domain,FETD)方法的主要方面.从二维TM情形弱解方程出发,讨论了当前三角形单元和相邻单元进行场量交互时数值通量物理意义和不同形式.结合数值通量和弱解方程得到了DGTD算法的迭代计算式.给出了线元辐射和双线元干涉的数值算例,算例结果表明了文中方法的正确性. The main difference between the discontinuous Galerkin time domain (DGTD)and the fi-nite element time domain (FETD)is the exchanging field by numerical flux.Based on the weak form solu-tion of TM case in 2D,the physical meaning of numerical flux and the different express between main unit and adjacent unit are firstly described.And then,combining the above,the DGTD iterative formulae are obtained.Finally,numerical examples of line source radiation and interference are given to demonstrate the validity of DGTD algorithm.
出处 《电波科学学报》 EI CSCD 北大核心 2016年第5期877-882,共6页 Chinese Journal of Radio Science
基金 国家自然科学基金(61231003 61401344 61571348)
关键词 时域非连续伽略金算法 算法值通量 结点基函数 discontinuous Galerkin method numerical flux nodal basic function
  • 相关文献

参考文献3

二级参考文献90

  • 1赵瑾,徐善驾,吴先良.一种高阶辛时域有限差分法的研究[J].电波科学学报,2004,19(5):569-572. 被引量:5
  • 2Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal on Numerical Analysis, 39: 742-760.
  • 3Bassi F, Rebay S. 1997. A high-order accurate discontin- uous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 131: 267-279.
  • 4Baumann C E, Oden J T. 1999. A discontinuous h-p fi- nite element method for convection-diffusion problems. Computer Methods in Applied Mechanics and Engineer- ing, 175: 311-341.
  • 5Biswas R, Devine K D, Flaherty J. 1994. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics, 14: 255-283.
  • 6Bokanowski O, Cheng Y, Shu C W. 2011. A discontinuous Galerkin solver for front propagation. SIAM Journal on Scientific Computing, 33: 923-938.
  • 7Bokaowski O, Cheng Y, Shu C W. A discontinuous Galerkin scheme for front propagation with obsta- cles. Numerische Mathematik, to appear. DOI: 10.1007/s00211-013-0555-3.
  • 8Bokanowski 0, Cheng Y, Shu C W. Convergence of dis- continuous Galerkin schemes for front propagation with obstacles, submitted to Mathematics of Computation.
  • 9Burbeau A, Sagaut P, Bruneau Ch H. 2001. A problem- independent limiter for high-order Runge-Kutta discon- tinuous Galerkin methods. Journal of Computational Physics, 169: 111-150.
  • 10Canuto C, Fagnani F, Tilli P. 2012. An Eulerian approach to the analysis of Krause's consensus models. SIAM Journal on Control and Optimization, 50: 243-265.

共引文献17

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部