期刊文献+

一类脉冲分数阶微分方程广义反周期边值问题解的存在性(英文) 被引量:6

On the Natural Solution of Generalized Anti-periodic BVP of Impulsive Fractional Differential Equations
下载PDF
导出
摘要 本文研究一类脉冲分数阶微分方程广义反周期边值问题解的存在性,利用不动点理论得到一些解的存在性结论,推广和补充了已有的一些结论.此外给出一个实例说明论文的主要结果的可行性. In this paper, a generalized anti-periodic boundary value problem for an impulsive fractional differential equation is studied. A natural formula of solutions is derived and some existence of solutions are established under some conditions via some fixed point theorems, which extend and supplement some known results. An example is given to illustrate the main results.
作者 王奇 魏天佑
出处 《应用数学》 CSCD 北大核心 2017年第1期78-89,共12页 Mathematica Applicata
基金 Supported by the Anhui Provincial Natural Science Foundation(1408085MA02,1508085QA01,1608085MA12) the Key Foundation of Anhui Education Bureau(KJ2012A019,KJ2013A028,KJ2014A010) 211 Project of Anhui University(02303303-33030011,J18520207,XJYJXKC04) the National Natural Science Foundation of China(11271371,11301004,51479215)
关键词 脉冲分数阶微分方程 广义反周期边值问题 不动点定理 impulsive fractional differential equation generalized anti-periodic boundary value problem fixed point theorem
  • 相关文献

同被引文献23

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部