期刊文献+

基于QBI成像技术构建脑结构连接网络 被引量:1

Construction of Brain Anatomical Connectivity Network Based on Q-ball Imaging
下载PDF
导出
摘要 目的为构建脑结构连接网络,本文提出一种基于Q空间球面成像(Q-ball imaging,QBI)技术的扩展多向流线跟踪算法,并根据纤维束路径走向构建脑结构连接矩阵。方法首先,根据磁共振图像进行脑组织分割,之后与标准模板对比完成灰质功能区域划分和标记;然后,采用球面插补计算取向分布函数(orientation diffusion function,ODF),进而根据扩展多向流线算法进行路径跟踪。最终根据跟踪出的纤维束数量及其路径所处功能区来构建结构连接矩阵。结果以真实脑数据为对象进行跟踪,生成连接矩阵,并进行连接通路分析。结论所得结果符合脑生理结构实际情况,适合于构建结构连接网络,为研究脑连接提供了一种新途径。 Objective To construct the brain anatomic connectivity, a new tracking method based on Q-ball im- aging (QBI) was proposed in this paper, and then the linkage matrices were generated according to the results. Methods First, the brain tissues were segmented out from the MRI images, and then the functional areas of the grey matter were labeled according to the standard template. Second, the orientation diffusion function (ODF) was calculated using spherical interpolation, and the paths were traced using the method of multiply directional streamline. Then the linkage matrices were constructed according to the number of nerve fiber paths and their start-end points. Results This algorithm was applied to the real brain dataset, and the connectivity matrices were generated. Conclusion The method could be used to track the nerve fibers with high angle resolution and to resolve crossing and branching paths, the tracked results are more reasonable and suitable for the construc- tion of the anatomic linkages. This paper paves a new way for brain connectivity research.
作者 吴占雄 李珣
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2016年第6期428-433,共6页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(51207038) 浙江省自然科学基金(LY17E070007)
关键词 结构连接 跟踪 Q空间球面成像 structural connectivity tracking Q-ball imaging
  • 相关文献

参考文献2

二级参考文献28

  • 1Zhukov L, Museth K, Breen D, et al. Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data [J]. Journal of Electronic Imaging, 2003, 12:125 - 133.
  • 2Suyash PA, James CG. A fuzzy nonparametric segmentation framework for DTI and MRI analysis [ J]. IEEE Transactions on Medical Imaging, 2007, 2.6:1525 - 1536.
  • 3Neji R, Fleury G, Deux JF. Support vector driven markov random fields towards DTI segmentation of the human skeletal muscle [ A ]. In: IEEE International Symposium on Biomedical Imaging: from Nano to Macro[C]. Paris: IEEE, 2008. 923-926.
  • 4Zhang Yongyue, Brady M, Smith S. Segmentation of brain MR imaging through a hidden markov random field model and the expectation-maxlmization algorithm [ J ]. IEEE Transactions on Medical Imaging, 2001, 20: 45- 57.
  • 5Jose LM, Federico G. Some extensions of the K-Means algorithm for image segmentation and pattern classification [ R ]. AIM-1390, 1993.
  • 6Li Hua, Yezzi A, Cohen LD. Fast 3D brain segmentation using dual-front active contours with optional user-interaction [ J]. International Journal of Biomedical Imaging, 2006, 1155 - 1165.
  • 7Mohammad MK, Hamid SZ, Caro L. Unsupervised MRI segmentation with spatial connectivity [ J]. Symposium on Medical Imaging, 2002, 4684:1742 - 1750.
  • 8章毓晋.图像分割[M].北京:科学出版社,2001..
  • 9Katscher U, Bomert P. Parallel RF transmission in MRI[J].NMR Biomed, 2006,19(3):393-400.
  • 10Berker Y,Franke J, Salomon A, et al. MRI-based attenuationcorrection for hybrid PET/M RI systems: a 4-class tissuesegmentation technique using a combinedultrashort-echo-time/Dixon MRI sequence[J]J Nucl Med,2012, 53(5):796-804.

共引文献5

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部