期刊文献+

一种融合社会化信息的改进单类协同过滤方法研究 被引量:1

Study of improved one class collaborative filtering method merged with social information
下载PDF
导出
摘要 文章在负例抽取阶段考虑用户的活跃度和项目间相似度,以及在概率矩阵分解时融合用户好友关系和项目标签社会化信息的基础上,提出了一种融合社会化信息的改进单类协同过滤(one class collaborative filtering with social information,OCCF-SI)方法,并在科研社交网络CiteULike的真实数据集上进行了实验。研究结果表明,与其他传统的推荐方法相比,该文所提出的方法取得了较好的推荐结果,具有良好的可扩展性。 In this paper, the improved one class collaborative filtering with social information(OCCF- SI) is proposed. On the one hand, the user's activity and the similarity between projects are consid- ered when extracting the negative cases; on the other hand, the social information of user's friends relations and project's labels is merged into the probability matrix factorization. The experiments on the real dataset in a scientific social network named CiteULike are conducted. The experimental re- sults show that compared to other traditional recommendation methods, the proposed method gets the best recommendation results and performs well in scalability.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第12期1705-1711,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(71101042 71471054) 安徽省自然科学基金资助项目(1608085MG150)
关键词 :推荐系统 单类协同过滤 社会化信息 科技论文推荐 recommendation system one class collaborative filtering(OCCF) social information scientific paper recommendation
  • 相关文献

参考文献1

二级参考文献8

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 4Schafer J B, Konstan J A, Riedl J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2):115--153.
  • 5Sarwar B M, Karypis G, Konstan J A, et al. Analysis of recommendation algorithms for E-commerce[C]//Proc of the 2nd ACM Conference on Electronic Commerce. New York: ACM Press, 2000:158--167.
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proc of the 10th International Conference on World Wide Web. New York: ACM Press, 2001 : 285--295.
  • 7Aggarwal C C, Wolf J L, Wu K L, et al. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering[C]//Proc of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1999: 201--212.
  • 8赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140

共引文献20

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部