期刊文献+

基于改进的多层小波分解压缩感知图像处理 被引量:3

Compressed Sensing Image Processing Based on Improved Multi Layer Wavelet Decomposition
下载PDF
导出
摘要 为了改进图像恢复效果,减少运行时间,提出了一种基于改进的多层小波分解压缩感知图像的处理方法。该方法利用小波变换对图像进行多层分解,根据小波域高频系数分布特点通过高斯矩阵随机观测,利用正交匹配追踪算法(OMP)恢复高频系数,最后通过小波逆变换重构图像。实验结果表明,本文的算法优于传统算法,峰值信噪比(PSNR)平均提高了4~6 d B,运行时间缩短了1~2个量级,为物联网、无线传输技术提供了更好的可能性。 In order to improve the effect of image restoration and reduce the operation time, a compressed sensing method based on improved multi-layer wavelet decomposition is proposed. The image is divided into multi-blocks by multilayer wavelet transform and the Gaussian matrix is used to observe the high frequency based on the characteristics in domain. For the reconstruction, high frequency can be recovered by the matching pursuit algorithm (OMP) and the image can be reconstructed by the inverse wavelet transformation. Simulation results demonstrate that the proposed algorithm is better than the traditional algorithm, and the PSNR is improved about 4 ~ 6 dB, and the operating time is shortened about 1 - 2 magnitude. It provides a better possibility for Internet of things and wireless transmission technology.
出处 《山西电子技术》 2016年第6期5-6,25,共3页 Shanxi Electronic Technology
基金 国家自然科学基金(31170668)
关键词 压缩感知 多层 分块 小波变换 高斯矩阵 正交匹配追踪算法 重构 compressed sensing multi layer blocks wavelet transform Gaussian matrix matching pursuit algorithm recon- struction
  • 相关文献

参考文献8

二级参考文献221

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献910

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部