期刊文献+

水环境中纳米氧化锌的环境行为及生物毒性研究进展 被引量:5

Behavior and toxicity of zinc oxide nanoparticles in aquatic environment
下载PDF
导出
摘要 随着纳米氧化锌的大量生产和应用,作为其最终受体之一的水环境将面临越来越大的威胁.纳米氧化锌在水环境中的团聚,溶解等环境行为使其具有不稳定性,在很大程度上影响着纳米氧化锌在水体中的迁移性、生物可利用性以及对生态环境的毒性.本文着重探讨纳米氧化锌在水环境中的环境行为及其影响控制因素和检测分析方法,归纳纳米氧化锌对不同种类水生生物的毒性效应,分析纳米氧化锌的毒性机制及其存在的问题,并对水环境中纳米氧化锌的环境行为及生物毒性的研究方向进行了展望. As one of the most extensively used engineered nanomaterials, zinc oxide nanoparticles (ZnO-NPs) have experienced rapid commercialization and production in the last several decades. The increasing application and usage of these products inevitably leads to release of ZnO-NPs into the aquatic environment, posing ongoing threats to the benthic life. The mobility, bioavailability, and ecotoxicity of ZnO-NPs are strongly regulated by the aggregation and dissolution of the nanoparticles, which markedly alter the stability of ZnO-NPs in aqueous phase. This review focuses on the environmental behavior of ZnO-NPs, the factors that influence their environmental behavior, and the related analytical methods. Further, the toxicity mechanisms for ZnO-NPs have also been summarized and future research on the environmental been discussed. behavior of ZnO-NPs and its ecotoxicity have
作者 王宁 刘丹 谢敏伟 李启彬 刘庆梅 WANG Ning LIU Dan XIE Minwei LI Qibin LIU Qingmei(Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China)
出处 《环境化学》 CAS CSCD 北大核心 2016年第12期2528-2534,共7页 Environmental Chemistry
基金 国家建设高水平大学公派研究生项目 美国国家自然基金(NSF#CBET-106775)资助~~
关键词 纳米氧化锌 环境行为 毒性效应 毒性机制 zinc oxide nanoparticles, environmental behavior, ecotoxicity, toxicity mechanism.
  • 相关文献

参考文献2

二级参考文献64

  • 1魏绍东.纳米氧化锌的现状与发展[J].化工中间体,2006,2(11):6-12. 被引量:7
  • 2张长波,骆永明,吴龙华.土壤污染物源解析方法及其应用研究进展[J].土壤,2007,39(2):190-195. 被引量:34
  • 3Adams L K, Lyon D Y, Alvarez P J J, 2006. Comparative eco-toxicity of nanoscale Ti02, Si02, and ZnO water sus-pensions. Water Research, 40(19): 3527 -3532.
  • 4Armon R, Weltch-Cohen G, Bettane P, 2004. Disinfection of Bacillus spp. spores in drinking water by Ti02 photocatal-ysis as a model for Bacillus anthracis. Water Science & Technology, 4(2): 7-14.
  • 5Aruoja V, Dubourguier H C, Kasmetes K, Kahru A, 2009. Toxicity of nanopartic1es of CuO, ZnO and Ti02 to microal-gae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4): 1461-1468.
  • 6Auffan M, Rose J, Wiesner M R, Bottero J Y, 2009. Chemical stability of metallic nanopartic1es: A parameter controlling their potential cellular toxicity in vitro. Environmental Pol-lution, 157(4): 1127-1133.
  • 7Baek Y W, An Y J, 2011. Microbial toxicity of metal oxide nanopartic1es (CuO, NiO, ZnO, and Sb203) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Science of the Total Environment, 409(8): 1603-1608.
  • 8Bradford M, 1976. A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
  • 9Choi 0, Hu Z Q, 2009. Role of reactive oxygen species in de-termining nitrification inhibition by metallic/oxide nanopar-tic1es. Journal of Environmental Engineering, 135(12): 1365-1370.
  • 10Cornejo-Garrido H, Kibanova D, Nieto-Camacho A, Guzman J, Ramirez-Apan T, Pilar F L et al., 2011. Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions. Chemosphere, 84(10): 1329-1335.

共引文献21

同被引文献37

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部