期刊文献+

基于云聚合理论的城市社区划分算法研究

Urban community classification algorithm based on cloud aggregation theory
下载PDF
导出
摘要 城市可以看做是由若干社区构成的一种特殊的社会网络,合理有效的城市社区划分不仅能够提高居民的生活质量,同时也有助于管理部门更好地实现城市的管理,以弥补现有城市规划存在的基础设施分配不健全等问题。根据云的形成过程提出一种创新的基于云聚合理论的城市社区划分算法,将社区节点作为个体,以水蒸气聚合成云、云重组过程为理论支撑,对节点进行逐步凝聚划分及重组,最终达到均衡稳定的状态。为验证算法的可行性,在MATLAB实验平台上进行仿真。显示提出算法的模块度量Q值为0.6572,较高于同类凝聚算法的模块度量值0.6121,表明所提算法的性能优于同类的凝聚算法,能较好地反映真实的城市社区结构,此外还能够获取优于现实社区的划分结果,更好地服务于居民和管理部门。 An urban can be regarded as a social network ,which is made up of a number of communities. A reasonable and effective community classification can not only improve residents' life quality, but also contribute to the better management of an urban. This paper developed a new classification algorithm based on cloud aggregation theory. The algorithm community nodes gradually aggregated and reorganize, ultimately achieved a balanced state by the theory. Experimental results indicate that modularity of the proposed algorithm is 0. 6572, which is higher than the similar algorithm' s modularity 0. 6121. Comparing with the classical algorithms and the real urban community structure, results demonstrate that this algorithm is better than the others, and it can reflect the real urban structure.
机构地区 南京邮电大学
出处 《计算机应用研究》 CSCD 北大核心 2017年第1期36-41,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(702710456)
关键词 城市社区划分 云聚合理论 模块度量值 凝聚算法 urban community division cloud aggregation theory modularity aggregation algorithm
  • 相关文献

参考文献1

二级参考文献13

  • 1NEWMAN M E J. The structure and function of complex networks [J], SIAM Review,2003,45(2) :167-256.
  • 2KERNIGHAN B W,LIN S. An efficient heuristic procedure for parti- tioning graphs [ J ]. Bell System Technical Journal, 1970,49 ( 2 ) : 291-307.
  • 3POTHEN A, SIMON H D, LIOU K P. Partitioning sparse matrices with eigenvectors of graphs [ J]. SlAM J Matrix Anal Applic, 1990,11 (3) :430-452.
  • 4PALLA G, FARKAS I J, PLLLNER P, et al. Directed network modules [ J]. New Journal of Physics,2007,9:186.
  • 5NEWMAN M E J. Fast algoiJthm for detecting community structure in networks [ J]. Physical Review E,2004,69(6) :66-133.
  • 6CLAUSET A, NEWMAN E J, MOORE C. Finding community structure in very large networks [ J ]. Physical Review E, 2004,70 ( 6 ) : 66- 111.
  • 7NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks [ J ]. PhysiCal Review E, 2004,69 ( 2 ) : 26- 113.
  • 8ESTER M, GE Rong, GAO B J ,et al. Joint cluster analysis of attribute data and relationship data: the connected k-center problem [ C ] // Proc of SDM. 2006.
  • 9MOSER F, GE Rong, ESTER M. Joint cluster analysis of attribute and relationship data without apriofi specification of the number of clusters [C]//Proc of the 13th ACM SIGKDD International Conference on Knowlege Discovery and Data Mining. New York : ACM Press, 2007 : 510-519.
  • 10DANG T A, VIENNET E. Community detection based on structural and attribute similarities[ C ]//Proc of the 6th International Confere- nce on Digital Society. 2012.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部