期刊文献+

椭圆—笛卡尔变换结合LKF的多基地雷达目标跟踪算法

Target tracking using elliptic-Cartesian transformation and LKF in multi-static radar system
下载PDF
导出
摘要 为了改善多基地雷达系统对高机动目标的跟踪性能,提出一种基于椭圆—笛卡尔变换结合线性卡尔曼滤波器(LKF)的目标跟踪算法。以最小化跟踪估计的均方差为目标,自适应选择发射器的发射波形和笛卡尔估计,通过椭圆—笛卡尔变换,将两个接收器所测量的时间延迟、多普勒平移和到达角度转换成笛卡尔坐标系中的目标位置和速度估计,使其与目标状态呈线性关系,并通过克拉美罗下界(CRLB)来表示笛卡尔估计的估计误差统计。最后,利用LKF进行滤波,进一步提高目标跟踪精度。实验结果表明,该算法在保持低计算量的同时,提供了较高的目标跟踪精度。 In order to improve the tracking performance of a multi-static radar system, this paper proposed a target tracking algorithm based on elliptic-Cartesian transformation and linear Kalman filter(LKF). First, to minimize the mean square error of the tracking estimation as the goal, it adaptively selected the transmit waveforms and Cartesian estimates. Then, it used the elliptic-Cartesian transformation to transform the time delay, Doppler shift and angle of arrival into Cartesian coordinates of target position and velocity estimates, so that the estimate had linear relation with the target state. And it represented the estimation error statistics of Cartesian estimation through Cramer-Rao lower bounds (CRLB). Finally, LKF was used to improve the target tracking accuracy. Experimental results show that the proposed algorithm provides a higher target tracking accuracy while keeping the low computation amount.
出处 《计算机应用研究》 CSCD 北大核心 2017年第1期189-193,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(91120308)
关键词 多基地雷达系统 机动目标跟踪 椭圆—笛卡尔变换 线性卡尔曼滤波 Lmulti-static radar system maneuvering target tracking elliptic-Cartesian transformation LKF
  • 相关文献

参考文献6

二级参考文献63

  • 1Peebles P Z and Berkowitz R S.Multiple-target monopulseradar processing techniques[J].IEEE Transactions onAerospace and Electronic Systems,1968,4(6):845-854.
  • 2Sinha A,Kirubarajan T,and Bar-Shalom Y.Maximumlikelihood angle extractor for two closely spaced targets[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(1):183-203.
  • 3Zhang Xin,Willett P K,and Bar-Shalom Y.Monopulse radardetection and localization of multiple unresolved targets viajoint bin processing[J].IEEE Transactions on SignalProcessing,2005,53(4):1225-1236.
  • 4Nandakumaran N,Sinha A,and Kirubarajan T.Jointdetection and tracking of unresolved targets with monopulseradar[J].IEEE Transactions on Aerospace and ElectronicSystems,2008,44(4):1326-1341.
  • 5Seliga T A and Coyne F J.Multistatic radar as a means ofdealing with the detection of multipath false targets byairport surface detection equipment radars[C].2003 IEEERadar Conference,Huntsville,Alabama,USA,2003:329-336.
  • 6Bradaric I,Capraro G T,Brady S H,et al..Multistaticmeasurements in a controlled laboratory environment[C].2010 IEEE Radar Conference,Washington DC,USA,2010:266-270.
  • 7Derham T.Doughty S,Baker C,et al..Ambiguity functionsfor spatially coherent and incoherent multistatic radar[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):230-245.
  • 8Adjrad M and Woodbridge K.A framework for the analysisof spatially coherent and incoherent multistatic radarsystems[C].2011 7th International Workshop on Systems,Signal Processing and Their Applications,Tipaza,Algeria,2011:155-158.
  • 9Nandakumaran N,Sinha A,and Kirubarajan T.Hybridradar signal fusion for unresolved target detection[C].Signaland Data Processing of Small Targets 2007,San Diego,California,USA,2007,Proceedings of SPIE Vol.6699,669911,1-8.
  • 10杨振起 张永顺 骆永军.双(多)基地雷达系统[M].北京:国防工业出版社,1996..

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部