期刊文献+

高温氢还原法制备纳米硅/石墨烯复合材料的结构与电化学性能

Structure and electrochemical performance of Si/graphene nanocomposites prepared by high temperature hydrogen reduction
下载PDF
导出
摘要 将Hummers法制备的氧化石墨烯(graphene oxide,GO)与纳米硅粉进行超声复合和高温氢还原,制备锂离子电池用纳米硅/石墨烯(Si/G)复合材料。利用扫描电镜、透射电镜、X射线衍射和Raman光谱分析,对Si/G复合材料的形貌与结构进行分析与表征,并测试其电化学性能。结果表明,通过高温氢还原,氧化石墨烯全部还原为石墨烯,无其它杂质相生成。石墨烯包覆在纳米硅颗粒表面,形成层状复合结构;与纯纳米硅粉相比,Si/G复合材料的电化学性能明显提高,在300 m A/g电流密度下,首次放电比容量为2 915.0(m A·h)/g,首次充电比容量为1 080.5(m A·h)/g,20次循环后比容量稳定在969.6(m A·h)/g,库伦效率为99.8%;而纯纳米硅粉的首次放电比容量和首次充电比容量分别为932.7和349.4(m A·h)/g,20次循环后比容量仅为6.4(m A·h)/g。 The nano-Si/graphene composites (Si/G) were prepared through ultrasonic mixing and high temperature hydrogen reduction using graphene oxide (GO) fabricated by Hummers method and nano-Si powder as raw materials. The morphology, microstructure and electrochemical properties of the Si/G composite material were investigated by the methods of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Raman spectra and constant current charge-discharge experiments. The results show that graphene oxide is reduced to graphene completely, and no other phases appear. The graphene coated on the surface of nano-Si particles forms a laminar composite structure. The electrochemical properties of Si/G composites are better than that of pure nano-Si powder. Si/G composite exhibits a high initial discharge capacity of 2 915.0 (mA·h)/g and an initial charge capacity of 1 080.5 (mA·h)/g at the current density of 300 mA/g. The reversible capacity is 969.6 (mA·h)/g after 20 cycles at the current density of 0.3 A/g, and the capacity retention is 99.8%. Compared to pure nano-Si powder with the initial discharge capacity of 932.7 (mA·h)/g, initial charge capacity of 349.4 (mA·h)/g and the reversible capacity of 6.4 (mA·h)/g at the current density of 0.3 A/g, the electrochemical performance of Si/G composites is improved significantly.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2016年第6期924-930,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家科技支撑计划资助项目(2013BAE04B02)
关键词 锂离子电池 石墨烯 纳米硅粉 高温氢还原法 电池容量 lithium-ion battery graphene, nano-Si powder high temperature hydrogen reduction cell capacity
  • 相关文献

参考文献2

二级参考文献60

  • 1朱勇,顾培夫,沈伟东,邹桐.射频磁控反应溅射氮氧化硅薄膜的研究[J].光学学报,2005,25(4):567-571. 被引量:4
  • 2任宁,尹鸽平,左朋建,仝钰进,程新群,史鹏飞.锂离子电池硅-锰复合材料的电化学性能[J].无机化学学报,2005,21(11):1677-1681. 被引量:8
  • 3闫俊美,黄惠贞,张静,杨勇.锂离子电池硅化物及其复合负极材料的研究[J].电化学,2005,11(4):416-419. 被引量:5
  • 4文钟晟.锂离子电池用高容量硅负极材料研究[M].上海:中国科学院上海微系统与信息技术研究所,2004:1-114.
  • 5李明齐,于作龙,瞿美臻,等.硅材料在锂离子电池负极中的应用研究进展[C]//第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集.成都,2007:42-43.
  • 6PARK M S, WANG G X, LIU H K, et al. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries[J]. Eleetrochimica Acta, 2006, 51: 5246-5249.
  • 7真空技术网.真空蒸镀阻隔包装薄膜的主要制备方法和应用[EB/OL].[2008-11-01].http://www.chvacuum.com/application/film/11351.html.
  • 8BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix [J]. J Electrochem Soc, 1981, 128: 725-729.
  • 9LIU W R, WANG J H, WU H C, et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries[J]. J Electrochem Soc, 2005, 152: A 1719-A 1725.
  • 10HATCHARD T D, DAHN J R. Study of the electrochemical performanee of sputtered Si1-xSnx films[J]. J Electrochem Soc, 2004, 151: A 1628-A 1635.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部