期刊文献+

颗粒物质冲击损伤特性研究 被引量:2

Impact damage of granular material
下载PDF
导出
摘要 在离散元(DEM)模拟过程中,颗粒物质的接触刚度对模拟结果有重要影响,而构成颗粒物质的材料本身存在大量的微观缺陷,由于在颗粒物质运动过程中反复冲击接触作用,必然导致颗粒物质内部微观缺陷的扩展和融合,使得颗粒物质的物理力学性质不断劣化,具体表现为接触刚度不断降低,直至发生冲击破碎。如何在离散元模拟过程中考虑颗粒物质的冲击损伤特性具有重要意义;以Hertz弹性接触力学为基础,结合连续损伤理论,定义了颗粒物质冲击损伤变量,建立了颗粒物质冲击损伤演化方程,提出了冲击损伤累积确定方法。结果表明:较小的冲击速度可以导致颗粒物质产生损伤,损失累积弱化了颗粒物质的接触刚度,损伤累积可导致颗粒破碎,在离散元模拟过程中应考虑颗粒物质的损伤累积。 The normal contact stiffness of granular material has a significant influence on the simulation results obtained with the discrete element method (DEM).Under repeated impacts during movement,micro-defects existing in granular material expand and converge.Thus particles'physical mechanical properties are weakened,i.e.,the particle contact stiffness decreases gradually till a particle finally crashes.Based on Hertz elastic contact theory and the continuum damage mechanics,here an impact damage variable of granular material was defined and an impact damage evolution equation was built to calculate impact damage accumulation.The results indicated that the material damage can be detected even at lower impact velocity,and the accumulation of impact damage weakens the contact stiffness and may result in final breakage of particles;the damage accumulation should be taken into consideration in the discrete element simulation process.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第23期100-105,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(41272346) 四川省科技支撑计划(2016SZ0067)
关键词 颗粒物质 冲击损伤 HERTZ接触理论 损伤累积 离散元 granular material impact damage hertz contact theory damage accumulation discrete element method (DEM)
  • 相关文献

参考文献2

二级参考文献41

  • 1Mangwandi C, Cheong Y S, Adams M J, Hounslow M J, Salman A D. The coefficient of restitution of different representative types of granules [J]. Chemical Engineering Science, 2007, 62( 1-2): 437-- 450.
  • 2Braccesi, Claudio, Landi, Luca. A general elastic-plastic approach to impact analysis for stress state limit evaluation in ball screw beatings return system [J]. International Journal of Impact Engineering, 2007, 34(7): 1272-- 1285.
  • 3Wan Changsen. Analysis of rolling element bearings [M]. London: Mechanical Engineering Publications Ltd., 1991.
  • 4Adams M J, Lawrence C J, Urso M E D, Rance J. Modelling collisions of soft agglomerates at the continuum length scale [J]. Powder Technology, 2004,140(3): 268--279.
  • 5Chau K T, Wong R H C, Wu J J. Coefficient of restitution and rotational motions of rock-fall impacts [J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(1): 69--77.
  • 6Loc Vu-Quoc, Zhang Xiang, Lesburg L. Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres [J]. International Journal of Solids and Structures, 2001, 38(36): 6455--6489.
  • 7Thornton C, Ning Z. A theoretical model for the stick/bounce behavior of adhesive, elastic-plastic spheres [J]. Powder Technology, 1998, 99(2): 154--162.
  • 8Thornton C, Ning Z, Wu C Y, Nasrullah M, Li L Y. Contact mechanics and coefficient of restitution [C]// Poschel T, Luding S. Granular gases. Berlin: Springer: 2001: 184-- 194.
  • 9Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Contact force-displacement relations for spherical particles accounting for plastic deformation [J]. International Journal of Solids and Structures, 2001, 38(36-37): 6455--6489.
  • 10Thornton C. Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres [J]. Journal of Applied Mechanic, 1997, 64(2): 383--386.

共引文献26

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部