摘要
Due to its strategic location, the Astara fault system (AFS), which is located in Iran, has given rise to a number of earthquakes. In spite of its frequent seismic events, limited information is available for AFS. Slip rate is one of the important variables for future scrutiny of seismic risk of this fault system. The main objective of this research is to study slip rates at intermediate and short terms for this fault system using geological, geodetic observations and empirical method. Using the geological data, the intermediate-term horizontal and vertical slip rates for AFS have been determined to be 2.8±0.2 and 0.27±0.03 mm/year, respectively. In addition, the short-term slip rates of the fault, based on the geodetic method (using displacement values of two GPS stations: HASH and DAMO) and assuming attenuation of 60% (to fold the sediment of South Caspian Basin and shortening of Talesh Mountain range), determined to be 1.23±0.03 and 2.05±0.05 mm/year for the horizontal and vertical slips, respectively. Finally, evaluation of the slip rate using empirical relationship yields 10 mm/year for the entire fault system, which seems rather implausible.
Due to its strategic location, the Astara fault system (AFS), which is located in Iran, has given rise to a number of earthquakes. In spite of its frequent seismic events, limited information is available for AFS. Slip rate is one of the important variables for future scrutiny of seismic risk of this fault system. The main objective of this research is to study slip rates at intermediate and short terms for this fault system using geological, geodetic observations and empirical method. Using the geological data, the intermediate-term horizontal and vertical slip rates for AFS have been determined to be 2.8±0.2 and 0.27±0.03 mm/year, respectively. In addition, the short-term slip rates of the fault, based on the geodetic method (using displacement values of two GPS stations: HASH and DAMO) and assuming attenuation of 60% (to fold the sediment of South Caspian Basin and shortening of Talesh Mountain range), determined to be 1.23±0.03 and 2.05±0.05 mm/year for the horizontal and vertical slips, respectively. Finally, evaluation of the slip rate using empirical relationship yields 10 mm/year for the entire fault system, which seems rather implausible.