期刊文献+

热像仪探测泄漏气体的信噪比建模与测试 被引量:1

Modeling and test of signal to noise ratio of leaking gas thermal imager
下载PDF
导出
摘要 建立了能够定量预测热像仪探测泄漏气体能力的信噪比(SNR)与气体浓度(C)模型SNR-C,利用该模型对制冷热像仪GasFindIRTM在SNR=1时对应的甲烷气体浓度进行预测,预测数据与实际测试数据吻合。搭建了SNR-C室内测试装置,测试了非制冷热像仪Photon320在以298、303、308、313和318 K面源黑体为背景时探测乙烯气体的SNR-C曲线。数据分析发现,Photon 320在SNR≈5时,实测与预测乙烯浓度在各黑体背景温度下均比较接近。在SNR=5时,模型预测的乙烯气体浓度分别为3146、987、570、394和298 ppm,该变化规律与实际测量结果一致。建立的SNR-C模型能预测热像仪探测气体的能力,而搭建的测试装置能定量测量热像仪探测泄漏气体时信噪比与气体浓度之间的变化关系,可用于热像仪探测泄漏气体的室内性能测试。 A SNR-C model to quantitatively predict the leak gas detection capability of thermal imager was proposed. Using this model, methane gas concentration of cooled thermal imager GasFindIRTM at SNR=1 was predicted, which was consistent with the measured results. The indoor testing setup was designed and built, SNR-C curves of uncooled thermal imager Photon320 to detect ethylene were tested at different temperatures of blackbody, namely 298, 303, 308, 313 and 318 K. Through analysis, measurement and prediction concentration at SNR ≈5 were relatively close in all of five blackbody temperatures, and respectively prediction concentration are 3146, 987, 570, 394 and 298 ppm. And this variation trend was consistent with the measured concentration. Therefore, the SNR-C model put forward in this article was able to predict the gas detection can quantitatively measure the relationship between test the indoor performance of gas leak detection of capability of thermal imager. While the testing setup SNR and gas concentration, which can be applied to thermal imager.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第12期12-19,共8页 Infrared and Laser Engineering
基金 国家自然科学基金(61471044)
关键词 泄漏气体红外成像 热像仪 气体探测 信噪比 gas leakage infrared imaging thermal imager gas detection SNR
  • 相关文献

参考文献2

二级参考文献16

  • 1金伟其.热成像系统静态性能模型研究的进展[J].电子学报,1995,23(10):179-183. 被引量:8
  • 2尹达人,许生龙.噪声等效温差(NETD)测试方法分析[J].红外技术,1997,19(4):31-33. 被引量:8
  • 3张敬贤,李玉丹,金伟其.微光与夜视技术[M].北京:北京理工大学出版社,1995.
  • 4胡明鹏,李宏壮,马冬梅.凝视型红外光电系统噪声等效温差测量[J].光电工程,2007,34(8):15-19. 被引量:10
  • 5张敬贤 李玉丹 金伟其.微光与红外成像技术[M].北京:北京理工大学出版社,2001.78.
  • 6Sun Yin, Ong K Y. Detection Technologies for Chemical Warfare Agents and Toxic Vapors [M]. US: CRC Press, 20O5.
  • 7Tegstam J, Danjoux R. Gas leak detection in the oil and gas industry using infrared optical imaging [EB/OL]. (2008-08) http://www.ndt, net/search/docs.php3 ?MainSource=61.2007.
  • 8Edward Naranjo, Shankar Baliga, Philippe Bernascolle. IR gas imaging in an industrial setting [C]//SPIE, 2010, 7661: 76610K- 1-76610K-8.
  • 9HITRAN. The high -resolution transmission molecular absorption database[EB/OL]. [2013-03] http://www.cfa.harvard. eduPaitran/.
  • 10Dennis F Flanigan. Limits of passive remote detection of Hazardous vapors by computer simulation [C]//SPIE, 1996, 2763: 117-127.

共引文献9

同被引文献4

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部