期刊文献+

Zn-EDTA-2Na配合物催化环氧丙烷与CO2反应合成碳酸丙烯酯的研究

Synthesis of Propylene Carbonate from CO_2 and Propylene Oxide Using Zn-EDTA-2Na Complexes as Catalysts
下载PDF
导出
摘要 以水为溶剂,利用无毒、稳定、廉价易得且具有强配位能力的乙二胺四乙酸钠盐(EDTA-nNa)与金属卤化物配位,构建了多种配合物MX_2-EDTA-nNa(M=Zn、Fe、Co、Ni;X=Cl、Br、I、NO_3;n=0、2、4)。配合物催化环氧丙烷与CO_2反应合成碳酸丙烯酯研究表明,配合物中金属中心Lewis酸性和阴离子离去能力越强,其催化活性越高;其中ZnBr_2-EDTA-2Na表现出最优异的催化性能,碳酸丙烯酯的收率和选择性分别为96.9%和99.3%,TOF达96.9 h^(-1)。通过复合氧化石墨烯,可以进一步提高ZnBr_2-EDTA-2Na的耐水性。另外,结合Redlich-Kwong方程和实验结果探讨了溶于反应液中CO_2的量,在25℃和1.25MPa下溶于反应液中的CO_2量超过9.3 mmol,将有利于CO_2转化为碳酸丙烯酯。 A series of novel MX2-EDTA-nNa(M=Zn, Fe, Co, Ni; X=Cl, Br, I, NO3; n=0, 2, 4) complexes were prepared through the coordination of metal halides with ethylenediaminetetraacetic acid sodium salts(EDTA-nNa)in aqueous solution. These prepared complexes were non-toxic, cheap, and stable. Based on the activities of MX2-EDTA-nNa, it was deduced that a strong acidity of metal and a strong leaving ability of anion were favorable for the cycloaddition reaction of CO2 with propylene oxide. In the case of using ZnBr2-EDTA-2Na as the catalyst,propylene carbonate(PC) selectivity and yield are 99.3% and 96.9%, respectively, showing a turnover frequency of96.9 h~(-1). The stability of ZnBr2-EDTA-2Na could be improved by graphene oxide. Furthermore, the mount of CO2 dissolved in the liquid phase was calculated using the Redlich-Kwong equations on the basis of PC yield. It was found that the amount of CO2 dissolved in the reaction solution was higher than 9.3 mmol at a temperature of 25℃and a pressure of 1.25 MPa. The good solubility of CO2 in the reaction liquid was favorable for CO2 conversion.
作者 陈盛 唐灵生 兰东辉 CHEN Sheng TANG Ling-shen LA N Dong-hui(College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China Yali Middle School, Changsha 410007, China)
出处 《精细化工中间体》 CAS 2016年第5期56-62,共7页 Fine Chemical Intermediates
关键词 Zn-EDTA-2Na配合物 催化 二氧化碳 碳酸丙烯酯 环加成反应 Zn-EDTA-2Na complex catalyst carbon dioxide propylene carbonate cycloaddition
  • 相关文献

参考文献1

二级参考文献143

  • 1R. Monastersky, Nature, 2013, 497, 13-14.
  • 2M. Liu, I. B. Wu, X. D. Zhu, H. L. He, W. X. Jia, W. N. Xiang, Atmo. En- viron., 2015, 114, 75-82.
  • 3E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazfibal, J. P6- rez-Ramirez, Energy Environ. Sci., 2013, 6, 3112-3135.
  • 4A. A. Lacis, G. A. Schmidt, D. Rind, R. A. Ruedy, Science, 2010, 330, 356-359.
  • 5S. Mathesius, M. Hofmann, K. Caldeira, H. J. Schellnhuber, Nat. Clim.Change, 2015, 5,1107-1113.
  • 6W. H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev., 2015, 115, 12936-12937.
  • 7M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev., 2014, 114, 1709-1742.
  • 8C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed., 2015, 54, 12116- 12120.
  • 9T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev., 2007, 107, 2365-2387.
  • 10. A. Padwa, S. S. Murphree, RKIVOC, 2006, 6-33.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部