期刊文献+

一种基于显著性和部件模型的无约束条件人脸检测方法 被引量:1

A Method Using Saliency and Part-based Model for Automatic Face Detection in Unconstrained Conditions
下载PDF
导出
摘要 针对无约束条件下的人脸检测进行研究,提出了一种基于显著性度量和部件模型的人脸检测方法。在部件模型为基础的检测方法中引入显著性理论,融合正面、左侧面、右侧面的三种平面外旋转姿态下的信息,生成完整有效的人脸显著图,并用于人脸检测。实验结果表明本文生成的人脸显著图能够更有针对性描述人脸区域,并且本文人脸检测方法相较Viola Jones人脸检测方法和基于部件模型的人脸检测方法有更高的检测率,运算速度相较原基于部件模型的人脸检测方法大有提高。 Face detection on unconstrained conditions is studied, and a method using saliency and calculation model of face saliency is proposed based on part-based model and the theory of saliency. Face saliency maps under three perspectives out of plane for each test image are generated, then a complete and effective face saliency map is received to achieve the purpose of face detection. The results show that Through the constructed face saliency map the facial region can be describe accurately, and our face detection method honors the better performance compared to the face detector of Viola Jones and method based on part-based model, and our improved method performs higher operation speed compared to the original part-based model.
作者 孔英会 高超 车辚辚 KONG Ying-hui GAO Chao CHE Lin-lin(School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, P.R. China)
出处 《科学技术与工程》 北大核心 2016年第34期97-102,共6页 Science Technology and Engineering
关键词 人脸检测 无约束条件 人脸显著性 部件模型 face detection unconstrained conditions face saliency part-based model
  • 相关文献

参考文献3

二级参考文献42

  • 1杨涛,李静,潘泉,程咏梅,王涛.基于"粒子"滤波器的复杂环境下头部跟踪算法[J].计算机工程与设计,2005,26(2):354-355. 被引量:3
  • 2王健,张桂林.复杂背景下运动目标的实时跟踪[J].计算机与数字工程,2005,33(11):18-21. 被引量:5
  • 3姚剑敏,孙俊喜,孙中森,宋建中.基于粒子滤波的小波特征跟踪方法研究[J].计算机仿真,2006,23(1):94-95. 被引量:5
  • 4Singer R A, Stein J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[ A]. Proc of IEEE Conference on Decision and Control [C] .Miami Beach: IEEE Press, 1971. 171 - 175.
  • 5Mahler R. A theoretical foundation for the stein-winter probability hypothesis density(PHD) multi-target tracking approach[ J]. Proc of the MSS National Symposium on Sensor and Data Fusion,2000,1(3) :99 - 118.
  • 6Mahler R. Multi-target moments and their application to multi-target tracking[ A ]. Proc of Workshop on Estimation, Tracking and Fusion: A tribute to Yaakov Bar-Shalom[ C]. Monterey: IEEE Press,2001. 134 - 166.
  • 7Mahler R. Multi-target bayes-fdtering via first-order multi-target moments[ J ]. IEEE Trans -on Aerospace and Electronic Systems, 2003,39(4) : 1152 - 1178.
  • 8J Vermaak, S J GodsiU,P Perez. Monte carlo filtering for multi-target tracking and data association [ J ]. IEEE Trans on Aerospace and Electronic Systems, 2005,41 ( 1 ) : 309 - 332.
  • 9Y Bar-Shalom, Fortman T E. Tracking and data association [A ]. New York Academic Press Inc [ C ]. San Diego: IEEE Press, 1988.26 - 31.
  • 10Reid D B. An algorithm for tracking multiple targets[ J ]. IEEE Trans on Automatic Control, 1979,24 ( 12 ) : 843 - 854.

共引文献28

同被引文献5

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部