期刊文献+

电磁控制两自由度涡生振荡的机理研究 被引量:1

The mechanism investigation of two-degree-of-freedom vortex-induced vibration with electro-magnetic forces
下载PDF
导出
摘要 电介质溶液中,电磁场产生的电磁力可以控制流体的运动.本文对两自由度圆柱涡生振荡及其电磁控制机理进行了数值研究.将坐标原点建立在振动圆柱上,推导了非惯性参考系指数极坐标下的涡量流函数方程、初始边界条件及水动力表达式.对圆柱沿法向和流向的流场、受力和位移的相互影响和瞬时对应规律进行了讨论,结果表明,圆柱的涡生振荡同时受到尾涡脱落和圆柱位移的影响.其作用方式沿法向通过影响圆柱上下两侧剪切层的强度,沿流向通过改变圆柱尾部二次涡的强度,从而改变圆柱的受力和运动.其中圆柱位移的作用效果与尾涡脱落的作用效果相反且占主导.另外,在电磁力的作用下,分离点被消除,使得圆柱的尾涡和推吸壁面的效果被抑制,从而使振动的诱因被消除,圆柱迅速达到稳定状态,并在电磁推力的作用下,圆柱的位置向上游移动. The electro-magnetic forces generated by electromagnetic field take control of the flow in the electrolyte solution.In this paper,the mechanism of two-degree-of-freedom vortex-induced vibration controlled by electro-magnetic forces is investigated numerically.With the coordinate at the moving cylinder,the stream function-vorticity equations,the initial and boundary conditions and distribution of hydrodynamic force are deduced in the exponential-polar coordinate.The equation of vorticity transport is solved by the alternative-direction implicit algorithm.The equation of stream function is integrated by means of a fast Fourier transform algorithm.The cylinder motion is calculated by the Runge-Kutta method.The flow field,pressure,lift/drag and cylinder displacement are interacted along the transverse and streamwise direction,where the instantaneous variations are discussed.The derivation shows that the vibration displacement in one direction,whose effects on the flow field influence the vortex-induced forces in both directions,affects the inertial force only in the corresponding direction and is independent of that in the other direction.The numerical calculations show that the vortex-induced vibration is affected by two factors,i.e.,the vortex shedding and the cylinder shift.Both of the two factors have influences on the shear layers in the transverse direction and the secondary vortex in the streamwise direction,which further leads to the variations of lift/drag and the cylinder motion.Along the transverse direction,the strength of shear layer on one side is increased by the vortex shedding while the strength of shear layer on the other side is increased by the cylinder shift.Along the streamwise direction,the pressure of cylinder tail is varied with the effect of shedding vortex on the secondary vortex while the effect of cylinder shift on the secondary vortex is also opposite to that of shedding vortex.Notably,the effect of cylinder shift prevails over the effect of shedding vortex so that the former is dominated in the total effects.The flow separation and vortex shedding are suppressed as the fluid of boundary layer is accelerated under the action of electro-magnetic forces.Meanwhile,the vibration displacements decrease gradually along both the transverse and streamwise directions,which also suppresses the effects of pressure/suction sides.Therefore,the vibration is suppressed and the cylinder turns steady rapidly.In addition,the thrust generated by the wall electromagnetic force counteracts the drag generated by the fluid electro-magnetic force,which means that the final position is at the upstream of the initial position.The experimental results show that the vortexes on the cylinder are suppressed fully and the flow field is steady under the action of electro-magnetic force,which agrees well with the numerical results.
作者 刘梦珂 张辉 范宝春 韩洋 归明月 Liu Meng-Ke Zhang Hui Fan Bao-Chun Han Yang Gui Ming-Yue(Science and Technology on Transient Physics Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第24期113-124,共12页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11672135 11202102) 高等学校全国优秀博士学位论文作者专项资金(批准号:201461)资助的课题~~
关键词 涡生振荡 电磁控制 流固耦合 流动控制 vortex-induced vibration electro-magnetic control fluid-structure interaction flow control
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部