期刊文献+

基于测量域二次采样的自适应压缩感知图像编码 被引量:3

Adaptive compressed sensing image code resampling in measurement domain
下载PDF
导出
摘要 采用K-SVD训练字典代替DCT(discrete cosine transform)基,在测量域用K-means算法对原图像块根据显著性进行区域划分,对类别质心较高的测量值所对应的显著图像块分配较高采样率,对类别质心较低的测量值所对应的非显著图像块分配较低采样率,进行二次测量.实验结果表明,K-SVD字典可以较好地解决DCT基中存在的方块效应问题.并且,在相同稀疏基以及整幅图像同等压缩率的前提下,采用K-means二次测量算法可以显著提高图像的重构质量,PSNR值提高0.76-4.91dB. DCT matrix is first replaced by the dictionary trained by K-SVD, and the image blocks are divided into salient regions and non-salient regions by K-means in measurement domain Then, the whole image is resampled by allocating the higher sam-pling rate to the salient regions, while lower sampling rate to the non-salient regions. Simulation results show that the dictionary trained by K-SVD solves the problem of poor profile representation Beside, with the same sparse matrix and compression ratio, K-means resampling method can improve the reconstruction quality that PSNR is improved by 0. 76-4. 91 dB.
出处 《中国科技论文》 CAS 北大核心 2016年第20期2325-2329,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20130203110005) 国家自然科学基金资助项目(61271173 61372068)
关键词 图像处理 压缩感知 K-SVD 显著性 测量域二次采样 image processing compressed sensing K-SVD saliency resampling in measurement domain
  • 相关文献

参考文献1

二级参考文献10

  • 1Donoho D L. Compressed sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1:306.
  • 2Candes E J, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12) : 4203-4215.
  • 3Donoho D I., Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Infor- marion Theory, 2001, 47(7): 2845-2862.
  • 4Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118-121.
  • 5Cand's E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly in- complete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509.
  • 6Bajwa W U, Haupt J D, Raz G M, et al. Toeplitz- structured compressed sensing matrices [C]//IEEE 14th Workshop on Statistical Signal Processing. Madi- son, USA, 2007: 294-298.
  • 7DeVore R A. Deterministic constructions of compressed sensing matrices [J]. Journal of Complexity, 2007, 23 (4/5/6) : 918-925.
  • 8杨爱萍,张金霞,钟腾飞,等.分块OSTM测量矩阵构造及自适应压缩感知算法[J/OL].[2014-01-07].http://www.cnki.net/kems/doi/10.11784.tdx-bz201211006.html.
  • 9Pun T. Entropic thresholding, a new approach [J]. Computer Graphics and Image Processing, 1981, 16 (3): 210-239.
  • 10Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition [C]//27th Asilomar Conference on Signals, Systems & Comput- ers. Pacific Grove, USA, 1993: 40-44.

共引文献3

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部