期刊文献+

某1000 MW燃煤机组超低排放改造减排NO_X的环境效益评价 被引量:3

Environmental Impact Assessment on NO_X Emission Reduction of a 1000 MW Ultra-low Emission Coal-fired Unit
下载PDF
导出
摘要 利用AERMOD模型对某1 000 MW燃煤机组改造前后排放NO_X在大气中的传输、扩散过程进行了模拟,定量计算了NO_X环境浓度及其分布情况。研究发现:通过超低排放改造项目削减NO_X排放,可使环境空气中NO_X最大落地浓度大量减少、占标率明显下降;各峰值分布区域污染物浓度降幅显著,各时段均值占标率大幅下降;全区域各时间段浓度值均降低、分布梯度变小。研究结果表明:火电行业通过"超低排放"进一步控制NO_X污染对环境影响正效益显著,发电厂周边环境空气质量得以整体大幅提升。 The diffusion and transmission in the atmosphere of NOX emissions from a 1 000 MW coal-fired power plant is simulated by using AERMOD modeling system to calculate the ambient concentration and distribution of NOX. The results show that the reduction of NOXby "ultra-low emission" transformation enables greatly reduction of maximum ground concentration in ambient air and decrease of the ratio to standard concentration; the pollutant concentration in peak distribution area decreases and the mean values to standard concentration at each time period are lowered greatly; the concentration value in the whole region at every time period decreases and the distribution gradient of NOXbecomes smaller. The research shows that further control of thermal power industry over NO_Xpollution by "ultra-low emission" has positive benefit on the environment, and the ambient air quality around the power plant is notably improved.
出处 《浙江电力》 2016年第12期21-25,共5页 Zhejiang Electric Power
关键词 AERMOD NOX 环境影响 火电厂 超低排放 AERMOD NOX environmental impact thermal power plant ultra-low emission
  • 相关文献

参考文献8

二级参考文献128

  • 1吴炬,邹天舒,冷杰,曲莹军,徐晓初.采用混合式烟气再热技术治理火电厂“石膏雨”[J].中国电力,2012,45(12):26-30. 被引量:26
  • 2Alsop P A, 205. The Cement Plant Operations Handbook: The Concise Guide to Cement Manufacture (4th ed.). Emirates Printing Press, Dubai, United Arab Emirates. 42.
  • 3Bai Y, Thompson G E, Martinez-Ramirez S, 2006. Effects of NO2 on oxidation mechanisms of atmospheric pollutant SO2 over Baumberger sandstone. Building and Environment, 4: 486-491.
  • 4Bhardwaj K S, 2005. Examination of sensitivity of land use parameters and population on the performance of the AERMOD model for and urban area. Civil Engineering, Master thesis, University of Toledo, USA.
  • 5Caputo M, Gimenez M, Schlarnp M, 2003. Intercomparison of atmospheric dispersion models. Atmospheric Environment, 37: 2435-2449.
  • 6CFR (Code of Federal Regulations), Jul. 1, 1993.40 CFR Part 60, App. A, Of/ice of the Federal Register. National Archives and Records Administration, Washington DC, U.S. http://www.deq.state.or.us/aq/forms/sourcetest/appendix_a 1 .pdf; last accessed 24 April 2010.
  • 7Crowl D A, Louvar J F, 2002. Chemical Process Safety: Fundamentals with Applications (2nd ed.). Prentice Hall PTR, U.S. 172.
  • 8DOPA (Department of Provincial Administration), Thailand, 2010. http://www.dopa.go.th/xstat/p5019_01.html; last accessed 24 April 2010.
  • 9Isakov V, Venkatram A, Touma J S, Koracin D, Otte T L, 2007. Evaluating the use of outputs from comprehensive meteorological models in air quality modeling applications. Atmospheric Environment, 41: 1689-1705.
  • 10Kesarkar A P, Dalvi K M, Kaginalkar A, Ojha A, 2007. Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling: A case study for PM10 dispersion over Pune, India. Atmospheric Environment, 41: 1976-1988.

共引文献297

同被引文献24

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部