期刊文献+

一种基于粗糙集的味觉信号识别方法

A recognition method of taste signals based on rough set
下载PDF
导出
摘要 提出一种基于粗糙集的味觉信号识别方法.该算法运用粗糙集技术,在决策规则生成过程中,充分考虑数据集中各属性的重要度,并动态对其进行更新.由于决策过程中不断更新属性重要度,保证了每次将重要度最高的属性加入决策规则集,进而保证了决策系统的约简.基于机器学习数据集UCI中的2个味觉信号数据winequality_white和winequality_red,算法采用十折交叉验证技术,独立进行10次实验,并与2个经典算法进行了对比.结果表明,本文算法的味觉信号识别正确率更高、更有效. This is a recognition method of taste signals based on rough set. For the realization of computer taste, the identification of taste signals is also very important except developing taste sensor with high sensitivity. The algorithm of this paper bases on rough set technology. It fully considers attribute significances and updates them dynamically during the process of decision making. Because of constantly updating attribute significances,it ensures to add the attribute with highest significance to the rule set. So, the decision system is simple. Based on two machine learning data set UCI, winequality-white and winequality-red, the proposed algorithm adopts ten-fold cross validation technology to run ten times independently. And comparing with the two other classical algorithms, results show that the proposed algorithm is better and more effective than them on taste signal recognition rate.
作者 孙英娟 李彤 蒲东兵 姜艳 范木杰 SUN Ying-juan LI Tong PU Dong-bing JIANG Yan FAN Mu-jie(College of Computer Seienee and Teehnology,Changehun Normal University,Changehun 130032,China College of Information Scienee and Technology, Tsinghua University, Beijing 100084 ,China College of Computer Seience and Information Technology, Northeast Normal University, Changehun 130117, China)
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期52-56,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家留学基金资助项目(201408220056) 吉林省发展和改革委员会工业技术研究和发展计划项目(2014Y101) 吉林省教育厅科技计划基金资助项目(2014249 2015367 2013250)
关键词 粗糙集 味觉信号 属性重要度 离散化 区间划分 rough set recognition of taste signals attribute significance discretization region division
  • 相关文献

参考文献2

二级参考文献22

  • 1于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210. 被引量:70
  • 2杨明.一种基于改进差别矩阵的核增量式更新算法[J].计算机学报,2006,29(3):407-413. 被引量:76
  • 3杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 4刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 5Pawlak Z. Rough Set Theoretical Aspects of Reasoning About Data[M]. London: Kluwer Academic Publishers, 1991 : 1-110.
  • 6Pawlak Z, Slowinski R. Rough Set Approach to Multiattribute Decision Analysis[J]. European Journal of Operational Research, 1994, 72(33): 443-459.
  • 7Wong S K M, Ziarko W. On Optional Decision Rules in Decision Tables[Jl. Bulletin of Polish Academy of Science, 1985, 33(11/12): 693 -696,
  • 8Lydyard P M, Whelan A, Fanger M W. Instant Notes in Immunology [M]. Beijing: Science Press, 2001: 1-40.
  • 9Pawlak Z. Rough sets[ J ]. International Journal of Information and Computer Science, 1982,11(5) :341-356.
  • 10Pawlak Z. Rough set approach to multi-attribute decision analysis [J] .European Journal of Operational Research, 1994,72(3) :443-459.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部