期刊文献+

计及船体姿态变化的水池阻塞效应数值研究 被引量:4

Numerical study on the blockage effect of a towing tank considering ship motion
下载PDF
导出
摘要 在水池进行船模试验,特别在水池尺度较小、船模尺度相对较大时,必然遇到阻塞效应问题,必须予以修正。本文以KCS船为对象,计及自由度,计算无限域及1.5%、1.8%、2.2%、3.0%阻塞比的船模阻力以及船体的升沉和纵摇,另外计算了船宽、池宽比为0.16、0.18、0.21的船模阻力,分析了船宽池宽比对阻塞效应的影响。随阻塞比的增大,船模总阻力变化更加明显;通过不同公式的修正结果对比,建议在阻塞比小于1.5%的拖曳水池进行阻力试验,且当船阻塞比小于1.8%时,推荐斯科特公式和基于平均横剖面积的平均流修正公式作为主要的修正手段,船宽、池宽的比值也是阻塞效应修正不可忽略的因素。 When performing experiments in a towing tank, if the tank is small relative to the ship′s model, the block-age effect cannot be neglected and must be corrected. Using a KCS ship as the object, taking a finite degree of free-dom into account, and using the ship′s resistance with 1.5%, 1.8%, 2.2%, and 3.0% blocking ratios, the heave and pitch of the ship were calculated. In addition, the resistance of the ship, with ship breadth to tank breadth ratios of 016, 0.18, and 0.21, was calculated, and the influence of ship breadth to tank breadth ratio on the blockage effect was analyzed. Along with an increase in the blockage ratio, the total change in resistance was obvious. According to the results of this correction, the blockage ratio should be less than 1.5%. When the blockage ratio is less than 1.8%,the Scott formula and average flow formula based on the average transverse section are suggested as the major means of correction. The ratio of ship breadth to tank breadth cannot be ignored in the correction of the blockage effect.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第12期1619-1624,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(41176074 51209048 51379043 51409063) 工信部高技术船舶科研项目(G014613002) 哈尔滨工程大学青年骨干教师支持计划(HEUCFQ1408)
关键词 阻塞效应 船模阻力 阻塞比 数值计算 自由液面 斯科特公式 自由度 blockage effect ship resistance blockage ratio numerical calculation free surface Scott formula degree of freedom
  • 相关文献

参考文献3

二级参考文献23

  • 1彭娅玲,张志国,陈汝刚,方成跃.CFD辅助船舶艉部水润滑轴承设计的研究[J].润滑与密封,2008,33(5):72-76. 被引量:12
  • 2黄德波.高速方尾船型的兴波阻力数值计算[J].哈尔滨船舶工程学院学报,1983,(2):1-11.
  • 3Tuck E O. Shallow-water flows past slender bodies[J]. Journal of Fluid Mechanics, 1966,26: 81-95.
  • 4Tuck E O, Taylor P 1. Shallow water problems in ship hydrodynamics[C]// In: Proceedings of the 8th Symposium on Naval Hydrodynamics. Pasadena, Aug 1970: 627-659.
  • 5Gourlay T. A brief history of mathematical ship-squat prediction, focussing on the contributions of Tuck E 0. Journal of Engineering Mathematics, 2011, 70(1-3): 5-16.
  • 6Hooft J P. The behaviour of a ship in head waves at restricted water depth[J]. International Shipbuilding Progress, 1974, 244: 367-390.
  • 7Huuska O. On the evaluation of underkeel clearances in Finnish waterways [R]. Helsinki University of Technology Ship Hydro-dynamics Laboratory, Otaniemi, 1976.
  • 8Gourlay T. Slender-body methods for predicting ship squat[J]. Ocean Engineering, 2008, 35: 191-200.
  • 9The Manoeuvring Committee. Final Report and Recommendations to the 23rd ITTC[R]. Proceedings of 23rd ITTC, 2002: 223-229.
  • 10Yang Chi, Lohner Rainald. Calculation of ship sinkage and trim using a finite element method and unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2002, 16(3): 217-227.

共引文献15

同被引文献17

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部