期刊文献+

一种基于封闭均匀区域的SAR图像配准方法 被引量:10

SAR Image Registration Algorithm Based on Closed Uniform Regions
下载PDF
导出
摘要 为克服图像间灰度差异、旋转差异和尺度差异对SAR图像配准精度的影响,该文利用均匀区域在SAR图像中的灰度统计特性,提出一种基于稳定封闭均匀区域的SAR图像配准算法。首先基于多尺度非线性扩散理论,提取得到轮廓保持性较好的封闭均匀区域;然后构建具有仿射不变性的区域特征,采取基于多边形拟合的区域粗匹配方法和基于重合度的区域精匹配方法,实现由粗至精的区域匹配;最后用匹配区域的质心点构建图像变换模型。实验结果表明,该算法配准精度高,能有效克服待配准图像之间的灰度差异、旋转差异和尺度差异,对噪声具有较好的适应性。 In order to overcome the influence of gray difference, rotation difference and scale difference on image registration accuracy, the gray statistic property of uniform regions in SAR images is utilized and a SAR image registration algorithm based on stable closed uniform regions is proposed. Firstly, based on the multi-scale nonlinear diffusion theory, closed uniform regions with good contour pervserving ability are respectively extracted from two images. Secondly, two affine-invariant region features based on polygon fitting and coincidence degree are constructed to realized the coarse-to-fine region matching. Finally, the centroids of matched regions are used to construct the transform model between two images. Experimental results demonstrate that, the proposed algorithm has high registration accuracy, and is effective for gray difference, rotation difference and scale difference, moreover, it has high adaptability to noise.
作者 苏娟 李彬 王延钊 SU Juan LI Bin WANG Yanzhao(Rocket Force University of Engineering, Xi'an 710025, China)
机构地区 火箭军工程大学
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3282-3288,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61302195)~~
关键词 SAR图像配准 封闭均匀区域 多尺度非线性扩散 仿射不变性 SARimage registration Closed uniform regions Multi-scale nonlinear diffusion Affine-invariant
  • 相关文献

参考文献3

二级参考文献46

  • 1Li H, Manjunath B S, Mitra S K. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 2Dare P, Dowman I. An improved model for automatic feature-based registration of SAR and SPOT images. ISPRS Journal of Photogrammetry and Remote Sensing. 2001, 56(1): 13-28.
  • 3Hong T D, Schowengerdt R A. Automated precise registration of radar and optical satellite images. In: Proceedings of SPIE Conference on Applications of Digital Image Processing. San Diego, USA: IEEE, 2003. 88-96.
  • 4Shekhar C, Govindu V, Chellappa R. Multisensor image registration by feature consensus. Pattern Recognition, 1999, 32(1): 39--52.
  • 5Middelmann W, Pepelka V, Thoennessen U. Registration of multiaspect InSAR images. In: Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery. Orlando, USA: SPIE, 2003, 98-109.
  • 6Yao J C, Kian L G. A refined algorithm for multisensor image registration based on pixel migration. IEEE Transactions on Image Processing, 2006, 15(7): 1839-1847.
  • 7Keller Y, Averbuch A. Multisensor image registration via implicit similarity. IEEE Transactions on Pattern Analysis and Mt~chine Intelligence, 2006, 28(5): 794-801.
  • 8Kruger W. Robust and efficient map-to-image registration with line segments. Machine Vision and Applications, 2001, 13(1): 38-50.
  • 9He X C, Yung N H C. Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 791-794.
  • 10Bentoutou Y, Taleb N, Kpalma K, Ronsin J. An automatic image registration for applications in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2127-2137.

共引文献48

同被引文献53

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部