期刊文献+

Bi2WO6/WO3/C异质结型复合光催化剂的制备及其性能 被引量:5

Preparation and Performance of Bi_2WO_6/WO_3/C Heterojunction Photocatalysts
原文传递
导出
摘要 H_2WO_4经乙二胺插层和高温碳化后,水热条件下与Bi_2WO_6复合,制备了Bi_2WO_6/WO_3/C异质结光催化剂。采用X射线粉末衍射仪、紫外-可见漫反射光谱、扫描电子显微镜对样品进行表征。以罗丹明B为目标降解物,考察了光催化剂的催化性能。结果表明:Bi_2WO_6/WO_3/C异质结光催化剂性能明显优于纯Bi_2WO_6和WO_3/C。异质结的存在,抑制了光生电子与空穴的复合;此外,光催化剂低的导带电势,也有利于光催化活性的提高。 After intercalated by ethylenediamine, H2WO4 was mixed with Bi2WO6 under hydrothermal conditions to prepare Bi2WO6/WO3/C heterojunction photocatalysts. The Bi2WO6/WO3/C heterojunction photocatalyst samples as-synthesized were characterized by X–ray powder diffraction, ultraviolet–visual diffuse reflectance spectroscopy and scanning electron microscopy, respectively. The photocatalytic activity of the Bi2WO6/WO3/C heterojunction photocatalysts was investigated with Rhodamine B as a target degradation material. The results show that the photocatalytic activity of Bi2WO6/WO3/C heterojunction photocatalysts is superior to that of pure Bi2WO6 or WO3/C. The formation of heterojunction in Bi2WO6/WO3/C can suppress the recombination of the photogenerated electron–hole pairs, which results in an increase of photocatalytic activity. In addition, the lower conduction–band edge of Bi2WO6/WO3/C heterojunction photocatalysts also plays a constructive role in the enhanced photocatalytic efficiency.
作者 刘成 杨占旭 LIU Cheng YANG Zhanxu(College of Chemistry, Chemical and Environment Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第1期90-95,共6页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金项目(21401093) 辽宁省高等学校优秀科技人才支持计划项目(LR2015036,21671092)
关键词 钨酸铋 异质结 罗丹明B 光催化 bismuth tungstunate heterojunction Rhodamine B photocatalytic
  • 相关文献

参考文献5

二级参考文献112

  • 1Yu, L.; Zou, R. Z.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 2011, 47, 10719-10721.
  • 2Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P. Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv. Mater. 2008, 20, 2777- 2781.
  • 3Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441-16446.
  • 4Manos, M. J.; Petkov, V. G.; Kanatzidis, M. G. H2xMnxSn3..xS6 (x = 0.11.25): A novel reusable sorbent for highly specific mercury capture under extreme pH conditions. Adv. Funct. Mater. 2009, 19, 1087-1092.
  • 5All, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073-5091.
  • 6Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946-1971.
  • 7Violante, A.; Ricciardella, M.; Del Gaudio, S.; Pigna, M. Coprecipitation of arsenate with metal oxides: Nature, mineralogy, and reactivity of aluminum precipitates. Environ. Sci. Technol. 2006, 40, 4961-4967.
  • 8Baltpurvins, K. A.; Bums, R. C.; Lawrance, G. A.; Stuart, A. D. Use of the solubility domain approach for the modeling of the hydroxide precipitation of heavy metals from wastewater. Environ. Sci. Technol. 1996, 30, 1493- 1499.
  • 9Li, W.; Cao, C. Y.; Wu, L. Y.; Ge, M. F.; Song, W. G. Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. J. Hazard. Mater. 2011, 198, 143-150.
  • 10Manos, M. J.; Malliakas, C. D.; Kanatzidis, M. G. Heavy- metal-ion capture, ion-exchange, and exceptional acid stability of the open-framework chalcogenide (NH4)4Inl2Se20. Chem. Eur. J. 2007, 13, 51-58.

共引文献32

同被引文献33

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部