期刊文献+

自卷曲技术在微型储能器件上的应用

Self-Roll-Up Technology for Micro-Energy Storage Devices
下载PDF
导出
摘要 微型能源存储器件在可穿戴电子产品、微型自驱动探测器等领域有重要的应用前景,同时为研究储能器件电极结构、电子/离子传导率以及电化学动力学之间的内在联系提供了理想的平台。自卷曲技术是利用材料内部存在的残余应力而实现二维薄膜材料自行弯曲的一种方法。相比于传统微纳制备工艺,这种方法可以在微米尺度下将二维薄膜电极材料有序卷曲排列,为微型储能器件的制备提供了有效、便捷的途径。本文介绍了近些年自卷曲技术在微型能源存储器件上的重要进展,其中包括材料自卷曲的原理、自卷曲电极及其储能性质,并以此为基础,着重阐述了自卷曲技术制备单根管微型锂离子电池和电容阵列的应用实例。总结并展望了自卷曲技术在微型储能器件应用上的未来挑战和重要机遇。 Micro-energy storage devices are suitable for use in a range of potential applications, such as wearable electronics and micro-self-powered sensors, and also provide an ideal platform to explore the inner relationship among the electrode structure, electron/ion conductivity and electrochemical kinetics. Self-roll-up technology is an approach to rearrange automatically two-dimensional membrane materials because of residual stress. Compared with the conventional micro-nano fabrication technique, the self-roll-up technology realizes the ordered array of two-dimensional membranes, offering an effective and convenient way to fabricate microenergy storage devices. In this article, we review the recent important progresses of the self-roll-up technology for micro-energy storage devices, including the theory of the self-roll-up technology, and self-roll-up electrodes and their energy storage properties. Importantly, we highlight the practical applications of the self-roll-up technology for fabrication of single tubular micro lithium-ion batteries and capacitor arrays. Finally, future challenges and important opportunities of the self-roll-up technology for micro-energy storage devices are summarized and prospected.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第1期18-27,共10页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51402202)资助项目~~
关键词 自卷曲技术 能源存储 微型器件 锂离子电池 微型电容器 Self-roll-up technology Energy storage Micro-device Lithium-ion battery Micro-capacitor
  • 相关文献

参考文献1

二级参考文献74

  • 1Yu, H.; Zhou, H. J.. Phys. Chem. Lett. 2013, 4, 1268.
  • 2Manthiram, A.; Chemelewski, K.; Lee, E. S. Energ Environ. Sci. 2014, 7, 1339. doi: 10.1039/c3ee42981d.
  • 3Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nat. Mater. 2012, 11,942. doi: 10.1038/nmat3435.
  • 4McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. Adv. Mater. 2013, 25, 4966. doi: 10.1002/adma.201301795.
  • 5Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.
  • 6Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi: 10.1021/cr500062v.
  • 7Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/crS00232y.
  • 8Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460.
  • 9Li, Z.; Huang, Y.; Yuan, L.; Hao, Z.; Huang, Y. Carbon 2015, 92, 41. doi: 10.1016/j.carbon.2015.03.008.
  • 10Li, W. Y.; Zheng, G. Y.; Yang, Y.; Seh, Z. W.; Liu, N.; Cui, Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148. doi: 10.1073/ pnas. 1220992110.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部