期刊文献+

Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin

Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin
原文传递
导出
摘要 Background: Traditional Chinese medicine wogonin plays an important role in the treatment of leukemia. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. Drugs coated with MNPs are becoming a promising way for better leukemia treatment. This study aimed to assess the possible molecular mechanisms of wogonin-coated MNP-Fe3O4 (Wog-MNPs-Fe3O4) as an antileukemia agent. Methods: After incubated for 48 h, the antiproliferative effects of MNPs, wogonin, or Wog-MNPs-Fe3O4on K562/A02 cells were determined by methyl thiazolyl tetrazolium (MTT) assay. The apoptotic rates of K562/A02 cells treated with either wogonin or Wog-MNPs-Fe3O4were determined by flow cytometer (FCM) assay. The cell cycle arrest in K562/A02 cells was determined by FCM assay. The elementary molecular mechanisms of these phenomena were explored by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Results: With cell viabilities ranging from 98.76% to 101.43%, MNP-Fe3O4was nontoxic to the cell line. Meanwhile, the wogonin and Wog-MNPs-Fe3O4had little effects on normal human embryonic lung fibroblast cells. The cell viabilities of the Wog-MNPs-Fe3O4group (28.64–68.36%) were significantly lower than those of the wogonin group (35.53–97.28%) in a dose-dependent manner in 48 h (P 〈 0.001). The apoptotic rate of K562/A02 cells was significantly improved in 50 μmol/L Wog-MNPs-Fe3O4group (34.28%) compared with that in 50 μmol/L wogonin group (23.46%; P〈 0.001). Compared with those of the 25 and 50 μmol/L wogonin groups, the ratios of G0/G1-phase K562/A02 cells were significantly higher in the 25 and 50 μmol/L Wog-MNPs-Fe3O4groups (all P〈 0.001). The mRNA and protein expression levels of the p21 and p27 in the K562/A02 cells were also significantly higher in the Wog-MNPs-Fe3O4group compared with those of the wogonin group (all P〈 0.001). Conclusions: This study demonstrated that MNPs were the effective drug delivery vehicles to deliver wogonin to the leukemia cells. Through increasing cells arrested at G0/G1-phase and inducing apoptosis of K562/A02 cells, MNPs could enhance the therapeutic effects of wogonin on leukemia cells. These findings indicated that MNPs loaded with wogonin could provide a promising way for better leukemia treatment. Background: Traditional Chinese medicine wogonin plays an important role in the treatment of leukemia. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. Drugs coated with MNPs are becoming a promising way for better leukemia treatment. This study aimed to assess the possible molecular mechanisms of wogonin-coated MNP-Fe3O4 (Wog-MNPs-Fe3O4) as an antileukemia agent. Methods: After incubated for 48 h, the antiproliferative effects of MNPs, wogonin, or Wog-MNPs-Fe3O4on K562/A02 cells were determined by methyl thiazolyl tetrazolium (MTT) assay. The apoptotic rates of K562/A02 cells treated with either wogonin or Wog-MNPs-Fe3O4were determined by flow cytometer (FCM) assay. The cell cycle arrest in K562/A02 cells was determined by FCM assay. The elementary molecular mechanisms of these phenomena were explored by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Results: With cell viabilities ranging from 98.76% to 101.43%, MNP-Fe3O4was nontoxic to the cell line. Meanwhile, the wogonin and Wog-MNPs-Fe3O4had little effects on normal human embryonic lung fibroblast cells. The cell viabilities of the Wog-MNPs-Fe3O4group (28.64–68.36%) were significantly lower than those of the wogonin group (35.53–97.28%) in a dose-dependent manner in 48 h (P 〈 0.001). The apoptotic rate of K562/A02 cells was significantly improved in 50 μmol/L Wog-MNPs-Fe3O4group (34.28%) compared with that in 50 μmol/L wogonin group (23.46%; P〈 0.001). Compared with those of the 25 and 50 μmol/L wogonin groups, the ratios of G0/G1-phase K562/A02 cells were significantly higher in the 25 and 50 μmol/L Wog-MNPs-Fe3O4groups (all P〈 0.001). The mRNA and protein expression levels of the p21 and p27 in the K562/A02 cells were also significantly higher in the Wog-MNPs-Fe3O4group compared with those of the wogonin group (all P〈 0.001). Conclusions: This study demonstrated that MNPs were the effective drug delivery vehicles to deliver wogonin to the leukemia cells. Through increasing cells arrested at G0/G1-phase and inducing apoptosis of K562/A02 cells, MNPs could enhance the therapeutic effects of wogonin on leukemia cells. These findings indicated that MNPs loaded with wogonin could provide a promising way for better leukemia treatment.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第24期2958-2966,共9页 中华医学杂志(英文版)
关键词 APOPTOSIS Cell Cycle Leukemia Cell Magnetic Nanoparticle WOGONIN Apoptosis Cell Cycle Leukemia Cell Magnetic Nanoparticle Wogonin
  • 相关文献

参考文献1

二级参考文献2

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部