摘要
飞蛾扑火优化(MFO)算法是一种新颖的群智能优化算法,该算法的主要灵感来源于飞蛾在自然界中被称为横向定位的飞行方式。作为一种新提出的仿生群智能优化算法,分析了飞蛾扑火优化算法的生物学原理,对算法的实现过程建立了数学模型。通过典型的函数优化对算法进行了仿真测试,结果显示飞蛾扑火优化算法是可行性的、有效的。最后,对将来的工作做进一步的展望。
The Moth-flame Optimization (MFO) algorithm is a novel swarm intelligence optimization algorithm. The main inspi- ration of this algorithm is the navigation method of moths in nature called transverse orientation. As a novel bionic swarm intelli- gence optimization algorithm, this paper analyzed the bionic principle of moth-flame optimization algorithm and built mathemat- ical modelling for the process of the realization. By means of 10 typical benchmark functions are tested, the results demonstrate that MFO is effecitive and feasible. Finally, the future prospects for further work.
作者
李志明
莫愿斌
张森
LI Zhi-ming, MO Yuan-bin, ZHANG Sen (College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China)
出处
《电脑知识与技术》
2016年第11期172-176,共5页
Computer Knowledge and Technology
基金
国家自然科学基金资助项目(21466008)
关键词
最优化
横向定位
飞蛾扑火优化
函数优化
Optimization
Transverse orientation
Moth-flame optimization
Function optimization