摘要
自2015年以来,"大数据时代"已成为时下最热门的名词之一,大数据在人们的生产生活中正扮演着越来越重要的角色。基于网络舆情大数据进行的口碑评价、精准营销在商业领域获得了巨大的成功。同时网络舆情大数据作为汽车召回缺陷判定的辅助信息来源,随着数据量的增长其分析方法层出不穷,数据的应用也从统计分析应用向数据深度挖掘方向飞速转化。本文主要从数据的分析处理和信息的传播属性分析两种方式来研究网络舆情大数据中具有普遍性和共性信息的过程。
Big data has been one of the hot words since 2015 and is playing an increasingly important role in our daily life. The big data analysis based on interact public opinion helps users' comments and evaluations and precision marketing success in commercial sector. While in automobile recalling events, analysis on big data including interact pubhc opinions could provide important evidence to decide if certain defect really exists. With the developing of analytic techniques, how to use the results are profoundly studied, rather than statistics interpreting. This paper expounds how to use Data Cluster Analysis and Data Dissemination Attributes Analysis to extract the common and general information in interact public opinions.
出处
《标准科学》
2016年第12期30-33,共4页
Standard Science
基金
中国标准化研究院院长基金项目"基于缺陷汽车产品故障表现的互联网影响力评价研究"(项目编号:282016Y-4502)资助
关键词
舆情
数据传播
标签
召回
interact public opinion, data dissemination, label, recalling