期刊文献+

基于云计算系统的空间查询处理方法 被引量:1

Spatial query processing approaches based on cloud computing system
原文传递
导出
摘要 针对传统的关系型空间数据库已经不能很好地适应于超大规模高并发空间查询访问的处理需要的问题,该文着眼于解决大数据时代下地理信息服务所面临的日益严峻的大规模空间查询访问需求,探索了一套基于Spark架构的空间查询实现技术,并给出相应的解决方案。提出一个基于Spark并提供类SQL访问接口的空间查询实现模型GeoSpark SQL,解决了以下关键问题:数据的外包矩形数据生成和标准地理信息数据对Spark的导入导出方法;Spark空间查询算子实现方法;Spark空间索引与查询优化方法。GeoSpark SQL模型在初步实验中,已可以满足实时性的要求,对复杂的空间查询也能有良好的性能表现。 For the traditional relational spatial database has been unable to meet the requirements of large scale and high concurrent access,this paper aimed to solve the increasingly large-scale spatial query access in the era of big data,and a set of methods and solutions of spatial query based on Spark was explored.An implementation model,GeoSpark SQL,based on Spark which provides SQL interface of spatial query were proposed,following key issues were researched and solved:the generation of bounding box to column and the import and export method of standard geographic spatial data;the expansion method for the access of spatial relationship operators in spatial query based on Spark;the accelerating method of spatial query parameter and the local cache of geometry deserialization.The model of GeoSpark SQL had been able to meet the demands of instantaneity in the preliminary experiments,which had a good performance in complex spatial join.
作者 陈逸然 黄舟
出处 《测绘科学》 CSCD 北大核心 2016年第12期273-278,共6页 Science of Surveying and Mapping
关键词 大数据 Spark架构 空间关系 空间查询 云计算 big data Spark spatial relationship spatial query cloud computing
  • 相关文献

参考文献3

二级参考文献20

  • 1张桂刚,李超,张勇,邢春晓.一种基于海量信息处理的云存储模型研究[J].计算机研究与发展,2012,49(S1):32-36. 被引量:23
  • 2李德仁.论广义空间信息网格和狭义空间信息网格[J].遥感学报,2005,9(5):513-520. 被引量:75
  • 3Bohm C, Krebs F. The k-nearest neighbor join: Turbo charging the KDD process. Knowledge Information System, 2004,6(6): 728-749. [doi: 10.1007/s10115-003-0122-9].
  • 4Xia CY, Lu HJ, Coi BC, Hu J. Gorder: An efficient method for KDD joins processing. In: Proc. of the 30th Int'l Conf. on Very Large Data Bases (VLDB). 2004. 756-767.
  • 5Yao B, Li FF, Kumar P. K nearest neighbor queries and KNN-joins in large relational databases (almost) for free. In: Proc. of the 26th Int'l Conf. on Data Engineering (ICDE). 2010.4-15. [doi: 10.1109/ICDE.2010.5447837].
  • 6Yu C, Cui B, Wang SG, Su JW. Efficient index-based KNN join processing for high-dimensional data. Information and Software Technology, 2007,49(4):332-344. [doi: 10.1016/j.infsof.2006.05.006].
  • 7Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 2008,51(1):107-113 [doi: 10.1145/1327452.1327492].
  • 8White T. Hadoop: The Definitive Guide. Sebastopol: Yahoo! Press, 2009.
  • 9Zhang C, Li FF, Jestes J. Efficient parallel kNN joins for large data in MapReduce. In: Proc. of the 15th Int'l Conf. on Extending Database Technology (EDBT). 2012.38-49. [doi: 10.1145/2247596.2247602].
  • 10Lu W, Shen YY, Chen S, Col BC. Efficient processing of k nearest neighbor joins using MapReduce. In: Proc. of the 38th lnt'l Conf. on Very Large Data Bases (VLDB). 2012. 1016-1027.

共引文献140

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部