摘要
针对产品拆卸序列规划问题,提出一种基于花朵授粉算法的求解拆卸序列规划问题的方法。结合智能优化算法求解拆卸序列规划问题的特点,采用遗传算法的优先关系保留交叉操作方式,对花朵授粉算法的授粉方式进行了离散化处理。在建立离散花朵授粉算法的基础上,构建了评价拆卸序列质量的适应度函数模型。通过实例对离散花朵授粉算法在不同初始条件设置的情况下进行了实验分析,并与遗传算法进行了比较,证明了所提算法的可行性与优越性。
Aiming at the Disassembly Sequence Planning (DSP) problem, a solving method based on Flower Pollination Algorithm (FPA) was proposed. By combining the characteristics of computational intelligence optimization algorithm that was applied in DSP, the pollination method of FPA was discretized with precedence preservative crossover operation of Genetic Algorithm (GA). Based on established Discrete Flower Pollination Algorithm (DFPA), the fitness function model for evaluating DSP quality was constructed. Through the instance, the experimental result of DFPA was analyzed under different initial condition, and the feasibility and effectiveness of proposed algo- rithm was proved by comparing with GA.
作者
焦庆龙
徐达
李闯
JIAO Qinglong XU Da LI Chuang(Department of Arms Engineering, Academy Armored Force Engineering, Beijing 100072, China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2016年第12期2791-2799,共9页
Computer Integrated Manufacturing Systems
基金
军队科研计划项目~~
关键词
拆卸序列规划
花朵授粉算法
拆卸优先关系
拆卸作业位置
disassembly sequence planning
flower pollination algorithm
disassembly priority relation
disassembly work position