期刊文献+

一类分数阶时滞扩散微分方程的数值解法

A Numerical Method for Solving Certain Fractional Diffusion Differential Equations with Delay
下载PDF
导出
摘要 考虑了一类时间分数阶变系数时滞扩散微分方程,方程中对时间的导数由传统一阶导数变为α(0<α<1)阶导数,对此类方程利用差分法构造了有效的差分格式,并对此格式的收敛性和稳定性进行证明,数值算例检验该格式解决此类方程是有效的. A numerical method is presented to solve one kind of time fractional variable coefficients delay diffusion differential equation,the first-order time derivative is replaced by Caputo fractional derivative,and a difference scheme is given,the difference scheme is stable and convergence.Numerical example shows that the numerical method is a practical method.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2016年第4期1-4,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金项目(11271101) 山东省高校科技计划项目(J15LI57)
关键词 时间分数阶 变系数时滞扩散微分方程 无条件收敛 无条件稳定 Time fractional variable coefficients delay diffusion differential equation unconditional convergence unconditional stable
  • 相关文献

参考文献5

二级参考文献37

  • 1王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 2于强,刘发旺.时间分数阶反应-扩散方程的隐式差分近似[J].厦门大学学报(自然科学版),2006,45(3):315-319. 被引量:20
  • 3李芳菲,贾梅,李春岭,李高尚.二阶两点边值问题3个解的存在性[J].上海理工大学学报,2006,28(6):553-557. 被引量:1
  • 4ZHU Shao-hong, ZHAO J. The alternating segment explicit-implicit scheme for the dispersive equation [ J ]. Applied Mathematics Letters, 2001, 14(6) :657 -662.
  • 5ZHANC. Qing-jie, WANG Wen-qia. A four-order alternating segment Crank-Nicolson scheme for the dispersive equation[J]. Computers and Math- ematics with Applications, 2009, 57(2) :283 -289.
  • 6CHEN Chang-ming, LIU F, BURRAGE K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation[ J]. Applied Mathematics and Computation ,2008,198:754 - 769.
  • 7郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 8Shen S, Liu F, Anh V, Turner I. Detailed analysis of a conservative difference approximation for the time fractional diffusion equation [J]. Journal of Applied Mathematics and Computing, 2006, 22(3): 1-19.
  • 9Podlubny I. Frcational Differential Equations [M]. Academic Press, San Diego, 1999.
  • 10Lubich C. Discretized fractional calculus[J]. SIAM Journal on Mathematical Analysist 1986(17): 704-719.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部