摘要
考虑了一类时间分数阶变系数时滞扩散微分方程,方程中对时间的导数由传统一阶导数变为α(0<α<1)阶导数,对此类方程利用差分法构造了有效的差分格式,并对此格式的收敛性和稳定性进行证明,数值算例检验该格式解决此类方程是有效的.
A numerical method is presented to solve one kind of time fractional variable coefficients delay diffusion differential equation,the first-order time derivative is replaced by Caputo fractional derivative,and a difference scheme is given,the difference scheme is stable and convergence.Numerical example shows that the numerical method is a practical method.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2016年第4期1-4,共4页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金项目(11271101)
山东省高校科技计划项目(J15LI57)
关键词
时间分数阶
变系数时滞扩散微分方程
无条件收敛
无条件稳定
Time fractional
variable coefficients delay diffusion differential equation
unconditional convergence
unconditional stable