期刊文献+

区间对象族的可镇定性分析

Stabilizability analysis of interval plant family
下载PDF
导出
摘要 参数鲁棒镇定问题(RSP)是针对具有参数不确定性的被控对象族设计一个鲁棒控制器C(s),该控制器可以鲁棒镇定对象中的每一个对象。RSP一直以来是鲁棒控制研究领域的难点和重点。被控对象Ρ(s,δ)的可镇定性是其鲁棒镇定问题的可解性条件。可镇定性半径δS定义为对象族满足可镇定性条件其不确定性参数向量δ的最大范数界,当‖δ‖<δS时对象族Ρ(s,δ)中任一对象都满足可镇定性。对具有纯虚零极相消的区间对象族进行研究,提出其可镇定性半径的解析计算方法。 The robust stabilization problem (RSP) for a plant family is to find a single proper controller C(s) to stabilize all members of P(s ,δ). RSP is a difficult problem to handle in robust control research area. Stabilizability of a plant family P ( s ,δ) is a solvability condition for the robust stabilization problem (RSP). The stabilizability radius δs is the maximal norm bound for the uncertainty parameter vector δ so that every member plant is stabilizable with ||δ|| 〈 δs- In this paper, we solve the calculation problem for the stabilizability radius of the interval plant family in pure imaginary pole-zero cancellation with analytical approach.
出处 《北京信息科技大学学报(自然科学版)》 2016年第6期1-9,共9页 Journal of Beijing Information Science and Technology University
关键词 参数不确定性 参数鲁棒镇定 区间对象族 可镇定性半径 parameter uncertainty parametric robust stabilization interval plant family stabilizability radius
  • 相关文献

参考文献5

二级参考文献27

  • 1伍清河,徐粒,穴泽义久.参数鲁棒镇定问题的可解性必要条件[J].自动化学报,2004,30(5):723-730. 被引量:6
  • 2Bartlett A C, Hollot C V, Huang L. Root location of an entire polytope of polynomials: It suffices to check the edges. Mathematics in Control Signals Systems, 1988, 1: 61- 71
  • 3Chapellat H, Bhattacharyya S P. A generalization of Kharitonov′s theorem: Robust stability of interval plants. IEEE Transactions on Automatic Control, 1989, 34(3): 306-311
  • 4Barmish B R, Hollot C V, Kraus F J, Tempo R. Extreme point results for robust stabilization of interval plants with first order compensators. IEEE Transactions on Automatic Control, 1992, 37(6): 707-714
  • 5Barmish B R. New Tools for Robustness of Linear Systems. New York: Macmillan Publishing Company, 1994
  • 6Blondel V, Gevers M. Simultaneous stabilizability of three linear systems is rationally undecidable. Mathematics in Control Signals Systems, 1993, 6: 135- 145
  • 7Vidyasagar M. Control System Synthesis: A Factorization Approach. Cambridge, Massachusetts: The MIT Press, 1985
  • 8Wu Q H. On the radius of parity interlacing property of plant family with parameter uncertainties. In: Proceedings of the 38th IEEE Conference on Decision and Control, Institute of Electrical and Electronics Engineering, Inc, 1999,2294~2299
  • 9Youla D C, Bongiorno J J, Jr. and Jabr H A. Modern Wiener-Hopf design of optimal controllers. Part I: The singleinput case. IEEE Transactions on Automatic Control, 1976, 21(1): 3-14
  • 10WU Qing-He.Stabilizability May Be Sufficient for Robustly Stabilizing an Interval Plant[J].自动化学报,2007,33(10):1084-1087. 被引量:7

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部