摘要
参数鲁棒镇定问题(RSP)是针对具有参数不确定性的被控对象族设计一个鲁棒控制器C(s),该控制器可以鲁棒镇定对象中的每一个对象。RSP一直以来是鲁棒控制研究领域的难点和重点。被控对象Ρ(s,δ)的可镇定性是其鲁棒镇定问题的可解性条件。可镇定性半径δS定义为对象族满足可镇定性条件其不确定性参数向量δ的最大范数界,当‖δ‖<δS时对象族Ρ(s,δ)中任一对象都满足可镇定性。对具有纯虚零极相消的区间对象族进行研究,提出其可镇定性半径的解析计算方法。
The robust stabilization problem (RSP) for a plant family is to find a single proper controller C(s) to stabilize all members of P(s ,δ). RSP is a difficult problem to handle in robust control research area. Stabilizability of a plant family P ( s ,δ) is a solvability condition for the robust stabilization problem (RSP). The stabilizability radius δs is the maximal norm bound for the uncertainty parameter vector δ so that every member plant is stabilizable with ||δ|| 〈 δs- In this paper, we solve the calculation problem for the stabilizability radius of the interval plant family in pure imaginary pole-zero cancellation with analytical approach.
出处
《北京信息科技大学学报(自然科学版)》
2016年第6期1-9,共9页
Journal of Beijing Information Science and Technology University
关键词
参数不确定性
参数鲁棒镇定
区间对象族
可镇定性半径
parameter uncertainty
parametric robust stabilization
interval plant family
stabilizability radius