摘要
利用贝叶斯网络对数据建立模型是目前人们研究热点。结构学习是贝叶斯网络的难点之一。为了避免启发式算法陷入局部最优和出现退化现象,提出了修正非法结构的人工免疫优化算法,通过适应度评分机制提取全局最优疫苗并对种群个体进行疫苗注射,采用评分机制修正有环图和双向边的非法贝叶斯网络结构。得到的网络结构具有较高的适应度。通过对经典网络进行结构仿真,验证了算法的效率和准确性。
Data modeling based on Bayesian network has received tremendous attention at present. Structure learning is one of the main pain points in Bayesian network. In order to avoid local optimal and degradation, an artificial immune algorithm is proposed to improve the illegal structure. First, the global optimum vaccine is extracted by a fitness function to modify the illegal structures. Then the proposed algorithm is compared with other learning algorithms for typical Bayesian networks. Experimental results show that the proposed algorithm is effective and accurate.
出处
《北京信息科技大学学报(自然科学版)》
2016年第6期41-46,共6页
Journal of Beijing Information Science and Technology University
基金
国家自然科学基金资助项目(61271198)
北京市科技提升计划项目(5211624101)
关键词
免疫算法
非法结构修正
贝叶斯网络
遗传算法
结构学习
immune algorithm
illegal structure modification
Bayesian network
genetic algorithm
structure learning